An Integrated Approach for Energy Efficiency Analysis in European Union Countries

Georgia Makridou
Kostas Andriosopoulos
Michael Doumpos
Constantin Zopounidis

Working Paper 2014.02
April 2014
List of Working Papers

Editorial Committee

Constantin Zopounidis, Michael Doumpos, Fotios Pasiouras

2010.01 Modelling banking sector stability with multicriteria approaches
C. Gaganis, F. Pasiouras, M. Doumpos, C. Zopounidis

2010.02 Bank productivity change and off-balance-sheet activities across different levels of
economic development
A. Lozano-Vivas, F. Pasiouras

2010.03 Developing multicriteria decision aid models for the prediction of share repurchases
D. Andriosopoulos, C. Gaganis, F. Pasiouras, C. Zopounidis

2010.04 Developing an employee evaluation management system: The case of a healthcare organization
E. Grigoroudis, C. Zopounidis

2010.05 Analysis of domestic and cross-border mega-M&As of European commercial banks
M. Nnadi, S. Tanna

2010.06 Corporate culture and the tournament hypothesis
N. Ozkan, O. Talavera, A. Zalewska

2011.01 Mutual funds performance appraisal using a multicriteria decision making approach
V. Babalos, N. Philippas, M. Doumpos, C. Zopounidis

2011.02 Assessing financial distress where bankruptcy is not an option: An alternative approach for local municipalities
S. Cohen, M. Doumpos, E. Neophytou, C. Zopounidis

2012.01 Multicriteria decision aid models for the prediction of securities class actions: Evidence from the banking sector
V. Balla, C. Gaganis, F. Pasiouras, C. Zopounidis

2012.02 Service quality evaluation in the tourism industry: A SWOT analysis approach
M. Tsitsiloni, E. Grigoroudis, C. Zopounidis

2012.03 Forecasting the prices of credit default swaps of Greece by a neuro-fuzzy technique
G.S. Atsalakis, K.I. Tsakalaki, C. Zopounidis

2012.04 Sensitivity of consumer confidence to stock markets’ meltdowns
E. Ferrer, J. Salaber, A. Zalewska
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012.05</td>
<td>Efficiency and performance evaluation of European cooperative banks</td>
<td>M. Doumpos, C. Zopounidis</td>
</tr>
<tr>
<td>2012.06</td>
<td>Rating mutual funds through an integrated DEA-based multicriteria performance model: Design and information content</td>
<td>V. Babalos, M. Doumpos, N. Philippas, C. Zopounidis</td>
</tr>
<tr>
<td>2012.07</td>
<td>Combining market and accounting-based models for credit scoring using a classification scheme based on support vector machines</td>
<td>D. Niklis, M. Doumpos, C. Zopounidis</td>
</tr>
<tr>
<td>2013.03</td>
<td>Bank diversification and overall financial strength: International evidence around the crisis</td>
<td>M. Doumpos, C. Gaganis, F. Pasiouras</td>
</tr>
<tr>
<td>2014.01</td>
<td>The robustness concern in preference disaggregation approaches for decision aiding: An overview</td>
<td>M. Doumpos, C. Zopounidis</td>
</tr>
<tr>
<td>2014.02</td>
<td>An integrated approach for energy efficiency analysis in European Union countries</td>
<td>G. Makridou, K. Andriosopoulos, M. Doumpos, C. Zopounidis</td>
</tr>
</tbody>
</table>
AN INTEGRATED APPROACH FOR ENERGY EFFICIENCY ANALYSIS IN
EUROPEAN UNION COUNTRIES

Georgia Makridoua,b, Kostas Andriosopoulosa, Michael Doumposb, Constantin Zopounidisb,c

a Research Centre for Energy Management, ESCP Europe Business School, UK
b Technical University of Crete, School of Production Engineering and Management, Financial Engineering Laboratory, University Campus, 73100 Chania, Greece
d Audencia Group, School of Management, Nantes, France

ABSTRACT
This paper evaluates the energy efficiency of EU countries over the period 2000–2010. At the first stage, data envelopment analysis (DEA) is used, combining multiple energy consumption data, economic outputs, and environmental factors. The efficiency estimates obtained from the analysis are evaluated in a second stage through a multiple criteria decision aiding methodology (MCDA). The proposed non-parametric approach combining DEA with MCDA enables modeling of the problem in an integrated manner, not only providing energy efficiency estimates but also supporting the analysis of the main contributing factors, as well as the development of a benchmarking model for energy efficiency evaluation at the country level.

Keywords: energy efficiency, data envelopment analysis, multiple criteria decision aiding

1. INTRODUCTION

In the 1970s and early 1980s, energy efficiency emerged as a major issue for sustainable economic growth. Even after the 1986 counter oil shock and the decline in oil prices, environmental concerns continued to rise, especially in the context of the growing debates on global warming and climate change, which gave energy efficiency improvement a new
perspective. The latter, along with the 1993 world energy crisis, and in combination with the sharp increase in oil prices during the 2000s, today have put energy efficiency on the policy agenda of many countries as a top priority issue.

Governments are increasingly aware of the urgent need to make better use of energy resources. The benefits of more efficient energy use are well known, including reduced investments in energy infrastructure, lower fossil fuel dependency, increased competitiveness, and improved consumer welfare. Efficiency gains also deliver environmental benefits by reducing greenhouse gas emissions and air pollution. Therefore, it is not surprising that tracking economy-wide energy efficiency trends is being undertaken in many countries on a regular basis [1].

Energy efficiency has now been recognized as an essential component of sustainable development policies, which seek to achieve a well-balanced trade-off between economic growth and competitiveness, energy security, and environmental sustainability. As noted by Filippini and Hunt [2], policy making in this area has adopted energy intensity (i.e., energy consumption to gross domestic product [GDP]) as the main indicator for evaluating energy efficiency. However, as Patterson [3] noted, changes in energy intensity cannot be solely attributed to energy efficiency policies, as there are other important factors that affect energy intensity (e.g., the sector mix of the economy, the mix of the energy inputs, etc.). This is further confirmed by the empirical results presented by Filippini and Hunt [2] for OECD countries, who also noted the importance of introducing alternative measures controlling for structural economic and energy-related factors. In a wider context, Ryan and Campbell [4] emphasized the importance of going beyond the analysis of energy-related outcomes when evaluating energy efficiency policies. The framework proposed by the authors suggests the adoption of a broader socioeconomic perspective, which would enable policy makers to
generate accurate impact assessments considering a comprehensive range of benefits and
costs that result from energy efficiency programs.

Adopting the context introduced in such studies, in this paper the evaluation of energy
efficiency is considered in a multidimensional context. The proposed approach is based on the
consideration of data related to environmental pollution, country characteristics, information
on the use of renewable energy sources, as well as energy consumption. Thus, the framework
adopted in this paper considers energy efficiency for each country in relation not only to
energy data and economic output, but also considering environmental issues, and effects due
to differences in the structure of the economy. Furthermore, following the framework
proposed by Ryan and Campbell [4], we also consider the introduction of an evaluation model
that enables policy makers and analysts to consider the trade-offs between the different
benefits of energy efficiency. The analysis is based on data collected for European Union
countries over the period 2000–2010.

On the methodological side, at the first stage, we use data envelopment analysis (DEA)
to measure the relative efficiency of the countries. DEA is a popular, non-parametric
efficiency analysis technique with many applications in energy management and
environmental planning (see, among others, Boyd and Pang [5], Hu and Kao [6], Ramanathan
[7], Zhou et al. [8]). At the second stage, the DEA efficiency classifications are used as inputs
to a MCDA approach, which is used to build an operational model that combines energy
efficiency with economic and environmental indicators. The resulting multicriteria model
complements and enhances the technical efficiency estimates of DEA through the
introduction of a transparent composite indicator that enables the evaluation of all countries in
a common setting. Thus, the proposed integrated DEA/MCDA approach provides a
framework that policy makers can use to construct a standardized and comprehensible
composite energy efficiency and performance evaluation indicator, which can be easily used
for benchmarking purposes, allowing the formulation of a complete ranking of all countries under consideration, as well as the monitoring of the performance of any country over time, without having to resort to relative efficiency analyses every time an evaluation is sought. The introduction of the multicriteria approach also enables policy makers to evaluate different types of benefits that result from energy efficiency programs, without restricting the analysis solely to an input/output energy-economic context.

The remainder of this paper has the following structure: In Section 2, a literature review is presented, followed in Section 3 by the presentation of the main methodological tools used in the analysis. In Section 4, the data and variables used in the analysis are described, and in Section 5, the results are presented and described. Finally, in Section 6, the paper concludes, and future research directions are outlined.

2. LITERATURE REVIEW

Energy efficiency is a difficult concept to define. It is often confused with energy conservation, but conservation simply means using less energy, whereas efficiency implies meeting a given demand of energy required to provide products and services with a lower use of resources [9]. The directive on energy end-use efficiency and energy services of the European Council and the Parliament defines energy efficiency as “a ratio between an output of performance, service, goods or energy, and an input of energy” [10]. An even trickier task than defining energy efficiency is measuring it. To measure energy efficiency changes over time at the economy-wide level, and to be able to make cross-country comparisons, a rich body of research has emerged. On one hand, various efficiency-related indicators have been developed, with the ratio of total national primary energy consumption to GDP (energy intensity) among the most popular ones. On the other hand, most researchers focus on developing methods to decompose accurately the aggregate energy intensity into the true
change in intensities at the disaggregated sectorial levels, and to understand the effects of
structural changes in the economy.

Another line of research examines energy efficiency within a framework where energy
is one of the many inputs of production, with the most widely used technique being DEA. A
using DEA in energy and environmental analysis. According to the survey, 72 of these studies
were published between 1999 and 2006, which shows a rapid increase in the number of
studies using DEA. Zhou and Ang [12] presented several DEA-type linear programming
methods for measuring economy-wide energy efficiency performance using labor, capital
stock, and energy consumption as inputs, and GDP as the desirable output. DEA has also been
widely used in energy efficiency studies at the sector, sub-sector, and firm levels.

Bampatsou and Hadjiconstantinou [13] used DEA to develop an efficiency index, which
combines economic activity, CO₂ emissions, and energy consumption of the production
process in 31 European countries for 2004. The study provides estimates about the margins of
long-term changes in the consumption levels of exhaustible energy resources. In a similar
context, Ramanathan [7] used DEA to analyze the performance of 17 countries in the Middle
East and North Africa in terms of four indicators of energy consumption and CO₂ emissions
for the period 1992–1996. The authors concluded that oil-rich countries show no indication of
following carbon-friendly policies for their economic development.

Lozano and Gutiérrez [14] applied a number of non-parametric, linear programming
models for measuring energy efficiency in 21 OECD countries from 1990 to 2004, using the
environmental DEA technology concept. Lanfang and Jingwan [15] proposed a non-
parametric method based on DEA to measure energy efficiency, taking into account
undesirable factors such as water, gas, and solid wastes. In another study, Yu [16] used a
panel data set of 16 OECD countries to estimate the relationship between overall energy

Table 1 presents a brief overview of other studies that used DEA in measuring energy efficiency at the country level.

Furthermore, DEA has gained popularity in environmental performance measurement. Färe and Grosskopf [27] provided a formal index number of environmental performance using DEA techniques, using three pollutants (CO$_2$, SO$_X$, and NO$_X$) as undesirable outputs. The proposed index suggests that there may be no clear-cut relationship between pollutants and per-capita income. Zhou et al. [8] applied environmental performance measures to study the carbon emission performance of eight world regions, in 2002, under different reference technologies. The results show that the environmental performance index of a certain country may change under different environmental DEA technologies because different models are adopted under different situations. As a result, the choice of a specific environmental DEA technology would play an important role in environmental performance measurement. What is more, the study shows that the undesirable outputs’ orientation DEA model is particularly attractive because it provides a pure environmental performance measure.

In addition to DEA models, multicriteria decision-analysis has been used extensively to evaluate energy management and efficiency. MCDA is involved with decision problems under the presence of multiple (conflicting) decision criteria, which require the selection of
the best alternatives, the ranking of the alternatives according to their overall performance, or their classification into predefined performance groups.

Diakoulaki et al. [28] used a multicriteria methodology to determine the relative contribution of different factors such as socio-economic indices, structural characteristics, and energy mix of countries in reaching a desired level of energy efficiency. The authors’ analysis focused on 13 EU countries and the United States in three points in time, namely, 1983, 1988, and 1993, using data on economic growth, energy consumption, and its breakdown into energy forms and sectors. The results show that richer countries achieve better energy intensity than less developed ones. Appropriate pricing policies (mainly on electricity) and long-term structural changes in the energy system were the main effective means used to achieve efficient energy use in the late 1980s and early 1990s. These remarks agree with existing qualitative estimates about the relative importance of various factors related to energy efficiency at the national level, proving the capability of the proposed methodology to emphasize the examined problem through a detailed quantitative analysis.

Neves et al. [29] used the soft systems methodology (SSM) and value-focused thinking to elicit and structure objectives in MCDA models for evaluating energy efficiency initiatives, thus illustrating how these two methodologies may be used fruitfully. The study proves that SSM is a useful tool, which helps to clearly define the decision problem context and support the main actors involved, as well as to unveil the relevant objectives for each stakeholder. For example, in the case of the government and regulators, the main society-related objectives could be reducing environmental impacts (emission of atmospheric pollution, water pollution and etc.), improving the quality of service, and improving domestic comfort and welfare, among others. Whereas, in the case of corporations the main objectives are minimizing cost, maximizing revenues (or minimizing revenue losses), etc. Moreover, Mavrotas and Trifillis [30] used basic principles from DEA to facilitate the evaluation of the environmental
performance of 14 EU countries through a MCDA approach. The analysis was based on energy intensity, emission intensity, acidifying gases intensity, and other indicators related to the composition of the countries’ energy mix, use of land, and recycling. The results show that countries that exhibit a wide range of performances across the criteria result in a wide range of scores in the cross-evaluation matrix, while countries with more accumulated scores in the criteria result in a more narrow multicriteria score range, thus less sensitive to modifications in the relative importance of the evaluation criteria.

Furthermore, Zhou et al. [31] attributed the increased popularity of MCDA, especially in decision-making for sustainable energy, to the multi-dimensional nature of the sustainability goal and the complexity of the socio-economic and biophysical systems. For example, Qin et al. [32] developed an MCDA-based expert system to tackle the interrelationships between climate change and adaptation policies in Canada, and to facilitate the assessment of climate-change impacts on socio-economic and environmental sectors, as well as the formulation of relevant adaptation policies in terms of water resources management and other watersheds.

This overview indicates that despite the rich literature on the use of DEA and MCDA for energy efficiency analysis and planning, there has been almost no attempt to combine, in a unified context, the capabilities that the two approaches provide. Thus, this study contributes to the literature by adopting an integrated DEA/MCDA approach. On the one side, the DEA model results provide efficiency classification estimates and facilitate the identification of the sources of inefficiencies. On the technical side, however, the efficiency scores often have limited discriminating power when used for evaluation and do not allow a full ranking of the countries, which is important for benchmarking and comparative analyses purposes. Adler et al. [33] provided a comprehensive review of different DEA-based ranking techniques, but similar to Bouyssou [34], many of these approaches (e.g., cross-efficiency and super-
efficiency models) have significant methodological shortcomings. MCDA techniques, on the other hand, are particularly useful for evaluation problems under multiple (conflicting) criteria. Among others, MCDA provides several approaches for constructing composite indicators, which can be used to evaluate the energy performance and efficiency of a country and the impact of energy efficiency programs. Such composite indicators would be of interest to policy makers as these indicators introduce a transparent and easy-to-use framework that can support the decision-making process and the evaluation of the implemented actions and policies. The popularity of such composite indicators for sustainability assessment and environmental performance evaluation [35, 36] indicates their usefulness. Furthermore, in the context of energy efficiency, MCDA models enable the consideration of a wider set of additional socio-economic issues related to the benefits and impacts of policy decisions. For instance, Ryan and Campbell [4] presented a hierarchical typology of such issues, starting from international impacts (e.g., greenhouse gas [GHG] emissions, moderated energy prices, etc.), and also including national, sectoral, and individual impacts (e.g., job creation, macroeconomic effects, competitiveness, wellbeing, etc.). The consideration of these issues complements and enriches the results obtained from input/output energy-economic analyses, thus providing policy makers with a tool that enables them to quantify and evaluate the impacts of policy decisions in a wide context. However, in the MCDA framework the construction of evaluation models requires preferential information from the decision/policy makers (e.g., trade-offs and value judgments), which is often not available due to cognitive or time limitations.

Thus, DEA (and other frontier analysis techniques) and MCDA constitute useful tools for quantifying and measuring energy efficiency, each adopting a different perspective (for a comprehensive discussion in the context of DEA, see Belton and Stewart [37]). Nevertheless, despite the differences, integrating these approaches can combine the advantages of both
approaches, while addressing their limitations. Possible ways of combining the two paradigms have already been explored (see for example Doyle [38], Sinuany-Stern et al. [39], Lahdelma and Salminen [40]). Based on this framework, the next section first provides a brief presentation of the DEA models used in this study and then discusses the approach adopted to integrate DEA with an MCDA approach in order to construct a multicriteria composite indicator for energy efficiency evaluation.

3. METHODOLOGY

3.1 Data Envelopment Analysis

DEA, originally proposed by Charnes et al. [41], is a non-parametric frontier technique that measures the inefficiency of a particular entity by its distance from the best practice frontier constructed by the best-performing entities within the group. This methodology is well-established for evaluating the relative efficiencies of a set of comparable entities (decision-making units, DMUs; e.g., countries) that transform multiple inputs (energy and non-energy inputs) into multiple outputs (desirable and undesirable). Relying on linear programming techniques, and without having to introduce any subjective or economic prices (weights, costs, etc.), DEA provides a non-parametric estimate of the efficiency of each DMU compared to the best practice frontier constructed by the best-performing DMUs [12].

In particular, assume that there are data on K inputs and M outputs for N DMUs. For the i^{th} DMU, these are represented by the vectors x_i and y_i, respectively. The $K \times N$ input matrix X and the $M \times N$ output matrix Y represent the data for all DMUs. Then, the efficiency of the i^{th} DMU is measured by the ratio

$$\theta_i = \frac{u^T y_i}{v^T x_i} \in [0, 1]$$
where $u_i, v_i \geq 0$ are weight vectors corresponding to the outputs and inputs for the ith DMU. DEA assesses the relative efficiency of a DMU compared to a set of other DMUs. Under constant returns to scale (CRS) and assuming an input orientation, the maximum efficiency for the ith DMU can be estimated through the linear programming formulation introduced by Charnes et al. [41], which is expressed in dual form, as follows (CCR model):

$$
\min \quad F = \theta^c_i - \varepsilon (e s^+_i + es^+_i)
$$

Subject to:

$$X \lambda - \theta^c_i x_i + s^+_i = 0$$

$$Y \lambda - s^-_i = y_i$$

$$\lambda, s^+_i, s^-_i \geq 0, \quad \theta^c_i \in \mathbb{R}$$

(1)

where s^+_i and s^-_i are the vectors of slack variables for the inputs and outputs, respectively, indicating the improvements that an inefficient country should achieve to become efficient, e denotes a vector of ones, and $\varepsilon \approx 0$ is a small, positive constant that allows the solution procedure to give first priority to the optimization of θ^c_i. Denoting by F^* the value of the objective function of problem (1) at its optimal solution, country i is classified as efficient if and only if $F^* = 1$ (i.e. if the efficiency score is $\theta^c_i = 1$ and the slacks are zero).

Variable returns to scale (VRS) can be introduced by simply adding the convexity constraint $\lambda_1 + \cdots + \lambda_N = 1$ to the model above. This constraint ensures that a country is benchmarked only against other units of similar size. The resulting model is known as the BCC model [42].

Although the CCR model is invariant to the orientation of the modeling approach (i.e., input/output oriented), in the BCC model the orientation plays an important role. Most studies dealing with applications of DEA models in energy efficiency and other related areas have adopted an input-oriented approach. This is line with the nature of energy efficiency management, as a country or organization has more control over its available resources (energy, labor, capital, etc.), rather than the level of outputs (e.g., GDP). Following this
approach, we use an input-orientation for the CCR and the BCC model. In this study, we use a panel data set of 26 EU countries to measure energy efficiency through an intertemporal approach, thus assuming a common frontier that characterizes the efficiency of the countries over all years. The adopted intertemporal approach allows the comparison of the efficiency results over time and the identification of the observed efficiency trends.

3.2 Building an Operational Efficiency Evaluation Model through a Multicriteria Approach

As described earlier, in this study the results from the input/output frontier framework of DEA are combined with an MCDA modeling approach. The scope of the latter is to build an overall energy efficiency composite indicator that will enable the evaluation of all countries in a common and standardized setting. Furthermore, such an indicator will have enough discriminatory power to allow the complete ranking of all countries (both DEA-efficient and inefficient). Such features make the multicriteria model appropriate for benchmarking purposes allowing comparisons to be performed over time (for a single or multiple countries) based on a well-defined functional model without having to resort to comparative estimates such the ones used in DEA. Of course, the linear programming formulations of DEA do not pose any computational issues as they are easy to solve. Nevertheless, the sample-dependent character of the relative efficiency estimates obtained with DEA is not an appealing feature in a benchmarking and evaluation context, as it makes it difficult to perform direct comparisons whenever the set of data observations is altered. On the other hand, the multicriteria model enables analysts and policy makers to perform evaluations and monitor the performance of a country over time using data solely at the country level, without having to resort to relative assessments in comparison to data from a set of peer countries.

The second stage of the analysis is implemented using a multicriteria classification technique. In particular, the efficiency classifications, as defined from the DEA results, are
used to build the multicriteria evaluation model. The countries are classified as efficient or inefficient according to their DEA efficiency scores and a multicriteria model is then constructed, which combines n criteria, so that the model’s classifications are as close as possible to DEA’s efficiency classification. The UTADIS multicriteria method is used for this purpose [43]. The UTADIS method leads to the development of an additive value function of the following form:

$$V(x_i) = \sum_{j=1}^{n} w_j v_j(x_j) \in [0,1],$$

where w_j is a non-negative trade-off constant for evaluation criterion j and $v_j(x_j)$ is the corresponding marginal value function normalized between 0 and 1. The marginal value functions provide a decomposition of the aggregate result (global value) in terms of individual assessments at the criteria level. According to its global value, a country i is classified as efficient if and only if $V(x_i) > t$, where t is a cut-off point that distinguishes efficient countries from inefficient ones. The additive value function and the optimal cut-off point are estimated through linear programming techniques (a brief description is given in the Appendix).

4. DATA AND VARIABLES

For the empirical analysis, we used a panel data set for 26 EU countries1 over the period 2000–2010. During this period, the EU formulated an energy policy based on the Kyoto Protocol, through numerous directives and actions plans focused on improving energy efficiency. At the same time, the introduction of the Euro has changed the economic environment and the global financial crisis that started at the end of 2007 had a strong negative effect, mainly in eastern and southern European countries that experienced recession, 1 Malta is excluded due to unavailability of some data.
significant budget deficits, and high sovereign debt. In light of these developments, it is particularly interesting to examine energy efficiency in European countries over the selected period.

All data were obtained from Eurostat, except for labor force data, which were collected from the World Bank, and capital stock, which was obtained from the AMECO database of the European Commission. Choosing an appropriate set of indicators and evaluation criteria was clearly an important issue. The multidimensional character of energy efficiency and its multiple aspects (environmental, socio-economic, and technical) make it very difficult to specify a comprehensive set of relevant measurement indicators universally applicable under all contexts. In this study, the input and output variables, presented in Table 2, were selected based on data availability and the existing literature. All the economic variables are measured in constant prices, thus allowing comparisons over time eliminating the effect of inflation.

In the analysis, we considered two different settings for the input variables and two different settings for the output variables, thus leading to four DEA models (henceforth denoted as M1, M2, M3, and M4).

The first setting for the output variables considers GHG emissions and GDP, whereas in the second setting GDP is replaced by the value added from the industry and the services sectors, thus providing more detailed insight into the economic output of each country. Several indicators, such as GDP and GHG emissions, are widely used to monitor or track a country/region’s performance in energy efficiency [12, 44]; see also the studies listed in Table 1. Following previous studies, we use GHG emissions as an undesirable output corresponding to a negative by-product of energy use [45]. The importance of energy on GHG emissions is
reflected by the fact that 65% of emissions in the world are currently attributed to the use and production of energy [46]. According to Marrero [46], the elasticity between aggregate energy consumption and emissions is significantly greater than zero, but also below unity, indicating that a 20% reduction in energy consumption would not be sufficient to achieve a 20% emissions reduction goal. Therefore, an additional boost in efficiency or a shift in the energy mix toward less polluting energies would be required to achieve the emissions goal, which is the ultimate objective. Moreover, Lozano and Gutiérrez [14] showed that reasonable GDP growth rates are compatible with significant reductions (from current levels) in GHG emission levels, while higher levels of GDP could be attained if GHG consumption were reduced instead of increased.

Generally, the industry sector is more energy intensive than the service sector. Therefore, a structural shift from high-energy-consumption secondary industry to low-energy-consumption tertiary industry may lead to an improvement in overall energy efficiency, solely due to structural changes in the economic activity of a country. Yu [16], using the variations in the share of value-added from the industry and services sectors, in terms of GDP, showed that the service share has a significant positive impact on energy efficiency. However, he also showed that the industry share has an insignificant, small positive effect (less than 0.25%) and, as a result, may not affect energy efficiency at the country level substantially. Wei et al. [47] and Zhao et al. [48] examined energy efficiency in China and found that it is negatively associated with the secondary industry share in GDP, and that the simultaneous improvement of energy efficiency in energy-intensive sectors is mainly due to industrial policies. Furthermore, Zhao et al. [48] found that low energy prices have directly contributed to high industrial energy consumption, and indirectly to the heavy industrial structure. Arcelus and Arocena [49] compared the multifactor productivity levels and the changes across countries and across time, using a nonparametric model. The evidence obtained from a sample of 14
OECD countries indicates a high degree of catching-up among the various countries for the total industry, manufacturing, and services sectors. Hu and Kao [6] claimed that a newly industrialized economy will have lower total-factor energy efficiency than agriculture-dominant and service-dominant economies. Hence, the industrial structure of an economy is a crucial factor for energy efficiency, and thus the energy-saving ratio; an industry-dominant economy can improve its energy efficiency and save energy more efficiently and effectively by shifting the economy structure toward services. Therefore, it is important to decompose the influence of the value added to GDP by the industry and services sectors.

Similar to the outputs, two settings are also used for modeling the inputs. In particular, the first setting has four inputs, involving total energy consumption, capital stock, labor force, and materials consumption. Labor force is treated as a non-discretionary input. This specification assumes that measures to improve energy efficiency cannot have as a target the minimization of labor force. Instead, the conservation of the other inputs (i.e., capital, energy, materials) should be emphasized. In the second setting, total energy consumption is replaced by fossil fuel consumption and the consumption of other energy sources (renewables and nuclear), thus providing a more refined view of the energy mix that each country uses. The majority of studies that measure energy efficiency using the DEA framework choose inputs such as energy consumption, capital, and labor (see the studies listed in Table 1). Ramanathan [7] also used fossil fuel energy consumption as a minimization indicator, in the sense that countries with lower values in this indicator are more preferred. Mandal [45] used data related to capital, energy, labor, and raw materials as inputs, and claims that environmental regulation has the potential to positively affect energy use. Moreover, Hu and Wang [50] observed a high correlation among the inputs (labor, capital stock, energy consumption, and total sown area of farm crops) and the single output (real GDP). In the same vein, Hu and Kao [6] showed that labor employment, capital stock, and energy consumption actually do correlate.
with GDP performance. The authors also found that energy efficiency can be over-estimated or under-estimated if energy consumption is taken as a single input with a certain portion of GDP output produced not only by energy input but also by labor and capital. Hence, using a multiple-inputs framework is important to evaluate energy efficiency correctly [50].

Figure 1 presents the evolution of the selected variables aggregated over all countries over the period of the analysis. As far as the energy-related variables are concerned, the consumption of other fuels shows a steady increase throughout the examined period, mainly due to the increased use of renewable sources. However, total energy consumption and the consumption of fossil fuels increased slightly up to 2005–2006, followed by a decrease in the subsequent years. The trend in GHG emissions follows a similar pattern. As far as the economic variables are involved, GDP and the services value added increased considerably up to 2008, before falling in 2009 due to the global economic crisis. Capital stock, on the other hand, increased considerably over the examined period (about 25% increase overall).

Figure 2 illustrate the time trends for the relative shares of the two energy inputs to the total energy consumption (fossil and other fuels – decomposed into nuclear and renewables). It is clear that the share of renewables in the energy mix has followed an increasing trend, starting from 2003. During the same period (2003–2010), the share of fossil fuels has declined, but it is still ranges in levels that exceed 76%. The share of nuclear energy has also followed a slightly declining trend.
Although the selected input and output variables are meaningful in the context of DEA, they are not useful in a multicriteria setting, as they do not allow for direct comparisons among the countries. In particular, in DEA the countries are compared based on a ratio defined by each country’s aggregate outputs to its aggregate inputs. However, the multicriteria evaluation context relies on the use of a set of indicators on which the countries are directly comparable. The multicriteria modeling framework provides flexibility in the specification of these indicators. In this study, their selection is based on the framework introduced by Ryan and Campbell [4], who emphasized the need to analyze energy efficiency in a context much broader than the usual input/output energy-economic production model. Based on this framework, we use indicators that are relevant to the input/output modeling context discussed earlier for the DEA models, but also cover additional issues that policy makers may consider relevant for evaluating the impacts of energy efficiency programs as pointed out by Ryan and Campbell [4].

In particular, the second stage of the analysis is based on a set of ten evaluation criteria. Similar to the modeling approach used in DEA, the selected criteria (Table 3) combine energy efficiency indicators, economic growth and competitiveness indicators, environmental indicators, and two original indicators related to the primary energy source and the focus of the economy in each country. Furthermore, the selected indicators cover the top three levels (international, national, sectoral) in the hierarchical structure of energy efficiency benefits presented in Ryan and Campbell’s work [4]. In particular, energy intensity is used as the main proxy for energy efficiency as it is widely adopted by policy makers for assessing energy efficiency. GDP growth is used as the main indicator for measuring economic development, thus enabling the evaluation of the economy-wide impact of energy efficiency. However, economic output and growth are affected by many factors beyond energy use, and as explained, energy efficiency has multifaceted benefits. To consider these issues, we use
additional variables, including resource productivity (for the effect of materials’ use),\(^2\) gross fixed capital formation/GDP (the effect of investments), and current account balance/GDP (competitiveness).\(^3\) In addition, we control for the effect of environmental taxes, which affect energy costs and consumption, as well as the labor dimension (unemployment rate). Similarly to the DEA models described earlier and the existing literature, we consider the environmental effects of energy use and economic activity, by considering the level of GHG emissions in relation to GDP. Ryan and Campbell [4] also noted similar dimensions (GHG emissions, job creation, macroeconomic effects, competitiveness, among others) as important impacts of energy policies that must be introduced in a comprehensive evaluation framework. Finally, to control for the energy and economic mix, two additional indicators are introduced. The primary energy source indicator is used to consider the energy mix of a country in a particular year, indicating whether renewables, nuclear, natural gas, solid fuels, or petroleum consumption was the main energy source for the country. Economy focus is modeled as a binary indicator, designating whether the value added by the industrial sector of a country (as a percentage of GDP) in a given year is above or below the overall average of all countries. Introducing this indicator in the analysis enables the consideration of the differences among the various countries in terms of their level of industrial development (as industry is generally more energy intensive than services). The combination of the selected indicators in an additive evaluation model as described in section 3.2 not only provides policy makers and analysts with a comprehensive efficiency evaluation model, but also enables them to explore

\(^2\) Resource productivity is measured by Eurostat as the ratio of GDP to domestic material consumption and is reported in euros per kg. The same definition is also employed by OECD [51]. According to OECD this is a type of economic-physical measure which is suitable when the focus is on the decoupling of value added and resource consumption. Alternatively, physical or economic approaches can also be used to measure resource productivity (using physical or money values, respectively, for both the nominator and the denominator). The economic approach is more suitable when the focus is on the minimization of input costs, whereas the physical approach focuses on the maximization of outputs for a given level of inputs and a given technology. Dahlström and Ekins [52] however, argue that such a physical measure is a resource efficiency indicator, rather than a measure of productivity.

\(^3\) Policies for improving energy efficiency can have a positive effect on current account balance through reducing energy dependency and energy imports.
the trade-offs among the multiple aspects of energy efficiency (i.e., energy, economic, and environmental indicators).

5. RESULTS

5.1 DEA Results

Figure 3 illustrates the average constant returns-to-scale (CCR) and variable returns-to-scale (BCC) efficiency scores of the four models over the entire period of the analysis. The ratios between the CCR and BCC efficiency scores are above 0.9 in all cases, thus indicating that the scale effect (which is due to size differences among the countries) is only marginal. Of course, the models with more inputs and outputs lead to higher efficiency estimates, but this is fairly common in DEA (i.e., the DEA efficiency scores generally increase with the number of inputs and outputs). Generally, there are high correlations among the results of the four models. The correlations are stronger for the pairs M1-M2 (about 96% correlation coefficient under the CCR and BCC models) and M3-M4 (about 96-97% correlation coefficient under the CCR and BCC models). However, the similarities between each model M1 and M2 to M3-M4 are lower (correlation coefficient 85-90%). The pair of models M1-M2 differs from M3-M4 in the way that the outputs are defined, with the latter providing a more detailed breakdown of the economic output (M1-M2 consider only GDP, whereas M3-M4 consider the valued added by services and industry as separate outputs). Thus, when energy efficiency is assessed, the effect due to the consideration of the structure of the economic activity appears to be stronger than the effect due to the introduction of a breakdown by the energy mix of the countries.
When the efficiency estimates under the four modeling settings are compared with the energy intensity of the countries in the panel data set (Table 4), negative correlations are observed in all cases (all correlations are significant at the 1% level). The correlations are stronger for models M1 and M2, which use GDP as the main variable to measure economic output (similarly to energy intensity). However, as Filippini and Hunt [2] also observed, positive correlations are evident for some countries, mainly from east Europe, such as Estonia and Lithuania. During the global economic crisis, the negative correlations between the energy efficiency results and energy intensity increased, as the crisis in (most cases) had a severe negative effect on most of the economic variables, thus resulting in economic data following the declining trend observed for the energy-related variables.

When the efficiency trends are examined over time, the period 2000–2007 is characterized by increasing efficiency scores according to models M1 and M2 under constant (CCR efficiency) and variable (BCC efficiency) returns to scale. However, models M3 and M4 indicate a slightly decreasing trend up to 2003, followed by an increase up to 2007. The effect of the global economic crisis is clearly evident in the declining efficiency scores during 2008–2009 (under all modeling settings), whereas signs of minor recovery are evident in 2010. The 2008–2009 decline is larger under the models M3-M4. Overall, the results indicate that when the structure of the economy is explicitly considered (i.e., separation of GDP into the value added by the industry and services in models M3 and M4), then the efficiency improvements appear to be more conservative. Based on these findings, the subsequent
analysis focuses on model M4, which provides the most comprehensive consideration of the
economic outputs of the countries and their energy mix.

Table 5 presents the countries’ global CCR efficiency scores averaged over all ten years
of the analysis, as well as the percentage changes over the entire period of the analysis and
during the recent economic crisis (2008–2010). Luxembourg, the United Kingdom (UK),
Ireland, and the Netherlands achieved the highest efficiency scores overall, whereas Bulgaria,
Greece, the Czech Republic, and Spain have the lowest scores. Similar efficiency estimates
are reported for European countries in the recent study by Halkos and Tzeremes [53], who
applied DEA to 25 European countries using data from 2010. Similar to our results, the
authors found countries such as Sweden and the UK had high efficiency scores, whereas
countries such as Greece, Hungary, the Czech Republic, and Spain performed poorly (the
correlation of our results with those reported in Halkos and Tzeremes [53] for the CCR model
M4 is 0.48). In another study, Vlahinić-Dizdarević and Šegota [23] examined a set of 26
European countries (not identical to those in our study). Similar to our results, they found
countries such as the UK, Luxembourg, Ireland, and Denmark performed consistently well
over the period 2000–2010, whereas Bulgaria, the Czech Republic, Greece, and Hungary
performed poorly. Chien and Hu [19] also reported similar results using DEA in a sample of
OECD countries for 2001–2002 (e.g., Luxembourg, the UK, Denmark, Ireland had high
efficiency). In contrast to these DEA-based studies, Filippini and Hunt [2] used stochastic
frontier analysis for a panel data set of 29 OECD countries over the period 1978–2006, using
set of explanatory variables related among others to energy consumption, climatic conditions,
GDP, energy prices, and country size. Their results differ from the ones reported in the
present study and other DEA-based studies. Except for the longer time period used by
Filippini and Hunt, the discrepancies could be due to the differences in the variables used, the
different sample of countries, and of course the method used for the analysis.
Table 6 summarizes the estimated input and output improvements (averaged by year) that inefficient countries should seek to achieve to improve their efficiency status (under the BCC model). The results are reported for all outputs and inputs, except for labor force, which is treated as a non-discretionary (uncontrolled) input. The figures reported for the input variables involve the percentage reductions required for a country in particular year to become efficient, whereas for the output variables the reported improvements involve the target percentage increase in the level of economic activity (industry/services value added) and the reduction of GHG emissions. The results indicate that inefficient countries should implement policies that focus on energy conservation (i.e., reducing the consumption of fossil and other fuels), controlling the excessive use of materials and reducing GHG emissions (even though the effect of the latter has become weaker over the years). A closer examination further indicates some time trends, which highlight the increasing importance of the consumption of non-fossil fuels and materials, particularly after 2007 (the most recent time trends are clearly more relevant for policy making purposes). These results are in accordance with the trends shown earlier (Figures 1 and 2) for the input and output variables. For instance, as Table 6 shows, the inefficiencies of the countries with respect to the consumption of fossil fuels decreased after 2007, and at the same time the suggested improvements with respect to other fuels increased. This is in line with the increase in the consumption of other fuels (driven by the increase in renewables consumption) and the stabilizing-decreasing trend in the consumption of fossil fuels and their share in the energy mix of EU countries (see Figures 1 and 2). Thus, even though there has been an improvement of the energy mix from an environmental perspective (i.e., promotion of renewables and decrease in GHG emissions),
energy conservation still remains an important challenge, with the relative importance of renewables increasing over fossil fuels. Nevertheless, it should be noted that the design and implementation of policies for improving energy efficiency should also consider the interactions and synergies among different actions, the economic and environmental trade-offs, as well as complementarity and substitutability effects [54, 55], which may differ from country to country.

5.2 The Multicriteria Model

For the reasons explained in the previous subsection, the development of the multicriteria evaluation model in the second stage of the analysis is based on model M4. Given the CCR efficiency scores obtained with model M4, all countries are classified as efficient (efficiency score equal to 1) or inefficient (efficiency score lower than 1). The objective of the second stage analysis is to construct an operational multicriteria evaluation model for evaluating the energy efficiency of all countries in a multidimensional context. The UTADIS multicriteria method is used to fit a model on the efficiency classifications of DEA, combining the selected set of criteria presented in Section 4 (Table 3).

Overall, the sample includes 62 efficient country-year observations and 224 inefficient cases. Table 7 presents the means of the selected indicators for each group. All differences are statistically significant at the 5% level according to the non-parametric Mann-Whitney test (except for gross fixed capital formation/GDP and resource productivity). These comparative results indicate that energy-efficient countries have lower energy intensity, impose higher environmental taxes, experience higher GDP growth, are more competitive (lower current
account deficits), have lower unemployment rates, lower GHG emissions, emphasize the use of renewables, and are more services-oriented.

Table 7

Table 8 presents the estimated criteria trade-offs in the multicriteria additive model fitted to the above data. These trade-offs are proxies of the relative importance of the criteria. The indicators’ trade-offs indicate that GDP growth and energy intensity are the two most important factors, followed by current account balance/GDP, the indicator involving the energy mix of the countries, and resource productivity. These results are in accordance with the wider socio-economic impacts of energy efficiency that Ryan and Campbell [4] noted, as they imply that except for increasing the value of economic activity and reducing energy intensity, additional factors such as strengthening the competitiveness of the economy, improving resources productivity, and promoting the use of renewable energy, could also be part of the policy/decision-making process when it comes to analyzing energy efficiency and assessing its benefits and impacts.

Figure 4 provides further details on the sensitivity of the multicriteria energy efficiency score regarding the four most important criteria. In accordance with the indicators’ trade-offs, the sensitivity of the global (multicriteria) efficiency score is larger for the GDP growth ratio, with countries that achieve positive GDP growth rates receiving much higher scores compared to countries in recession. Furthermore, the multicriteria score improves at the highest rate when energy intensity falls below 400 Kgoe/€1000, the current account balance/GDP ratio exceeds 5%, and renewables are used as the main energy source. Such results and these levels on the selected indicators can support policy makers in setting target goals for the benefits that energy-efficiency programs should achieve.
The overall agreement between the efficiency classifications obtained with the DEA model (M4, CCR) and the ones of the MCDA model is 88%. In particular, 90% of the country-year observations classified by DEA as efficient are classified in the same group by the MCDA model, whereas the agreement level for the DEA inefficient cases is 87.5%. Table 9 provides a more detailed list of the countries with the largest differences in their annual rankings according to the DEA and MCDA models. In particular, Greece, France, Spain, Portugal, Italy, and Austria are ranked significantly better by the MCDA model compared to their rankings with the DEA model. For instance, Greece’s position in the annual rankings obtained with the MCDA model improved by 11 places (on average) compared to its ranking with the DEA model. However, the MCDA model significantly downgraded countries, such as Latvia, Lithuania, Poland, Estonia, Slovenia, and Slovakia. The downgrade for Latvia and Lithuania is 15 places (on average) in the annual rankings of countries. Interestingly, the group of countries significantly upgraded by the MCDA model have much lower energy intensity compared to the downgraded countries (171 Kgoe/€1000 vs. 485 Kgoe/€1000, on average; p-value<1%), higher resource productivity (€1.38/kg vs. €0.87/kg, p-value<1%), lower GHG emissions/GDP (0.46 vs. 1.24, p-value<1%), they focus more on renewables, and their economy is more services-oriented. These qualities compensate for the lower GDP growth rates that the upgraded countries have achieved (1.57% on average) as opposed to the downgraded ones (4.21% on average). Thus, the MCDA model’s results introduce some refinements in the estimates obtained with DEA based solely on a frontier-based input-output framework.
6. CONCLUSIONS

In this study, an integrated approach to energy efficiency evaluation was developed and implemented in the context of EU countries. The proposed approach considers energy efficiency in a multidimensional context, combining multiple energy consumption data, economic outputs, structural indicators, and environmental factors. DEA was used under different modeling settings to perform a relative evaluation of the efficiency of the EU countries over the period 2000–2010. The results obtained with a more comprehensive consideration of economic outputs and energy consumption provided a better indication of true energy efficiency, compared to simpler models that consider only aggregate energy and GDP data.

Combining the results of DEA with a multicriteria classification technique enabled the construction of an operational model that provides analysts and policy makers with evaluations of the countries’ energy efficiency in absolute terms, based on a common setting for all countries, without the need to resort to relative sample-dependent assessments (e.g., based on DEA) whenever an new evaluation must be performed. Furthermore, this modeling approach enables analysts and policy makers to consider a rich list of the impacts of energy-efficiency programs and actions, explore the underlying trade-offs, and ultimately reach more informed decisions. Of course, such a multicriteria evaluation model, which is built based on the results of a frontier technique such as DEA, needs to be periodically updated in accordance with the changes in the economic environment and the energy markets.

The results of the empirical analysis indicate that despite the considerable improvements achieved in terms of energy intensity, a more refined view of energy consumption and economic activity data shows that there is still much to be done to improve
the actual energy efficiency of EU countries. The economic crisis of the past few years has had negative effects (on average).

Taking into account the results of this study, policy makers could identify the main steps that should be followed to improve each country’s energy efficiency. Furthermore, the significance of each step can be measured, leading to more informed decisions in terms of priorities given. Weighing different policy measures is a challenging task; however, the results of this study could significantly help policy makers in their decision process. For example, the observation that a services-oriented economy is more efficient than an industry-oriented one or the fact that renewable energy sources should gradually displace fossil fuels could help regulators design policies to support certain sectors of the economy or certain energy sources. Furthermore, integrating MCDA with frontier techniques, as suggested in this study, enables policy makers to consider a much wider range of impacts of energy efficiency programs, instead of focusing solely on an input-output energy-economic production framework.

Future research could examine a wide range of issues. Among others, these may involve more detailed data on structural factors, the analysis of specific energy-intensive business sectors, the enrichment of the data set with countries outside the EU, and a more extensive time period, as well as the evaluation of the actions and policies implemented to improve energy efficiency at the country level.

REFERENCES

[16] Yu J. Energy efficiency and household behaviour in OECD countries (DRAFT); 2010.

APPENDIX
The multicriteria evaluation model developed with the UTADIS method is based on a sample of \(m \) observations (e.g., countries) each described over a set of \(n \) evaluation indicators. The observations are pre-classified into classes/categories defined in an ordinal manner. For simplicity, here it will be assumed that there are only two classes, involving \(m_E \) energy-efficient countries (denoted by \(E \)) and \(m_I \) inefficient countries (denoted by \(I \)). The UTADIS method fits an additive (nonlinear) model on the given classification of the observations in the sample.

The model optimization process is simplified by setting \(v_j'(x_{i0}) = w_j v_j(x_{i0}) \) in (2), which leads to the following equivalent alternative form of the additive evaluation model:

\[
V(x_j) = \sum_{j=1}^{n} v_j'(x_{i0})
\]

In this form, the marginal value functions \(v_1', v_2', \ldots, v_n' \) are scaled between zero and the trade-off constants of the criteria \(w_1, w_2, \ldots, w_n \). No restrictions are imposed on the functional form of the marginal value functions, other than that they are piecewise linear functions, non-decreasing for maximization indicators (e.g., GDP growth) and non-increasing for minimization criteria (e.g., energy intensity).

The estimation of the additive model that best fits the given classification of the observations is performed through the solution of the following mathematical programming problem:
\[\text{min} \quad \frac{1}{m_E} \sum_{i \in E} \sigma_i + \frac{1}{m_I} \sum_{i \in I} \sigma_i \]

Subject to:
\[\sum_{j=1}^{n} v_j^i(x_{ij}) + \sigma_i \geq t + \delta \quad \forall i \in E \]
\[\sum_{j=1}^{n} v_j^i(x_{ij}) - \sigma_i \leq t - \delta \quad \forall i \in I \]
\[v_j^i(x_{ij}) - v_j^i(x_{ij}) \geq 0 \quad \forall k, l \text{ with } x_{kj} \geq x_{lj} \]
\[\sum_{j=1}^{n} v_j^i(x_j^*) = 1, \sum_{j=1}^{n} v_j^i(x_j) = 0 \]
\[v_j^i(x_j), \sigma_i, t \geq 0 \quad \forall i = 1, \ldots, m, j = 1, \ldots, n \]

The objective of this formulation is to minimize the overall weighted classification error (controlling for the number of observations from each class). The non-negative variables \(\sigma \) define the classification error as \(\sigma_i = \max \{ t + \delta - V(x_i), 0 \} \) for the efficient cases and \(\sigma_i = \max \{ V(x_i) - t + \delta, 0 \} \) for the inefficient ones, where \(t \) is the cut-off point that distinguishes the two classes (to be estimated) and \(\delta \) is a small positive constant. The first two constraints are used to define the error variables. The third set of constraints ensures that that marginal value functions are non-decreasing (assuming that all criteria are expressed in maximization form), whereas the next two equality constraints normalize the global scores in \([0, 1]\). The highest possible score is assigned to an ideal country defined by the best available data on all criteria \((x_1^*, \ldots, x_n^*)\), whereas an anti-ideal country that comprises of the least preferred available data on all criteria \((x_1, \ldots, x_n)\) is assigned score equal to zero.

Introducing a piecewise linear form for modeling the marginal value functions allows expressing the above optimization model in linear form, which is easy to solve even for large data sets. Detailed descriptions of the resulting linear programming formulation can be found in the work of Zopounidis and Doumpos [56] and Doumpos and Zopounidis [43].

35
Table 1: Studies that use DEA to measure countries’ energy efficiency

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Sample</th>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bampatsou et al. [18]</td>
<td>1980-2008</td>
<td>EU-15</td>
<td>Energy consumption of fossil and non-fossil fuels, nuclear consumption</td>
<td>GDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>commercial and industrial use, electric power for residential use, gasoline, kerosene, heavy oil, light oil, city gas, butane gas, propane gas, coal, and coke</td>
<td></td>
</tr>
<tr>
<td>Lu et al. [22]</td>
<td>2005-2007</td>
<td>32 OECD</td>
<td>Value-added industry, population</td>
<td>GDP</td>
</tr>
<tr>
<td>Vlahinić-Dizdarević and Šegota [23]</td>
<td>2000-2010</td>
<td>26 EU countries</td>
<td>Labor, capital stock, energy</td>
<td>GDP</td>
</tr>
<tr>
<td>Wei et al. [24]</td>
<td>1980-2007</td>
<td>156 countries</td>
<td>Labor, capital, energy consumption</td>
<td>GDP</td>
</tr>
<tr>
<td>Yeh et al. [25]</td>
<td>2000-2007</td>
<td>Regions in China and Taiwan</td>
<td>Labor, capital stock, coal, oil, and electricity consumption</td>
<td>GDP, CO$_2$ and SO$_2$ emissions</td>
</tr>
<tr>
<td>Zhang et al. [26]</td>
<td>1980–2005</td>
<td>23 developing countries</td>
<td>Labor force, energy consumption, capital stock</td>
<td>GDP</td>
</tr>
</tbody>
</table>
Table 2: Input and output variables

<table>
<thead>
<tr>
<th>Type</th>
<th>Variable</th>
<th>Unit</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs</td>
<td>Greenhouse gas emissions</td>
<td>Thousands of tons (CO₂ equivalent)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Gross domestic product</td>
<td>Million euros</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Industry, value added</td>
<td>Million euros</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Services, value added</td>
<td>Million euros</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inputs</td>
<td>Total energy consumption</td>
<td>Thousand tons of oil equivalent</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fossil fuels energy</td>
<td>Thousand tons of oil equivalent</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Other fuels energy</td>
<td>Thousand tons of oil equivalent</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Labor force</td>
<td>Economically active population</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Domestic material</td>
<td>Thousand tons</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Capital stock</td>
<td>Billion euros</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 3: Evaluation criteria for building the second stage multicriteria model

<table>
<thead>
<tr>
<th>Energy intensity (Kgoe/€1000)</th>
<th>Current account balance/GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross fixed capital formation/GDP</td>
<td>Unemployment rate</td>
</tr>
<tr>
<td>Environmental taxes/GDP</td>
<td>Greenhouse gas emissions/GDP</td>
</tr>
<tr>
<td>Resource productivity (GDP/domestic material consumption, €/kg)</td>
<td>Primary energy source indicator</td>
</tr>
<tr>
<td>GDP growth</td>
<td>Economy focus indicator</td>
</tr>
</tbody>
</table>
Table 4: Correlations between the DEA efficiency scores and energy intensity

<table>
<thead>
<tr>
<th></th>
<th>CCR</th>
<th></th>
<th>BCC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>M4</td>
</tr>
<tr>
<td>Pearson correlation</td>
<td>-0.52</td>
<td>-0.57</td>
<td>-0.44</td>
<td>-0.45</td>
</tr>
<tr>
<td>Kendall’s τ</td>
<td>-0.41</td>
<td>-0.39</td>
<td>-0.28</td>
<td>-0.28</td>
</tr>
</tbody>
</table>

Table 5: Overall CCR efficiency scores (averaged over 2000–2010) and percentage changes (model M4)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Luxembourg</td>
<td>1.000</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.908</td>
<td>1.0</td>
<td>-0.4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>0.994</td>
<td>0.0</td>
<td>0.0</td>
<td>Italy</td>
<td>0.894</td>
<td>-2.6</td>
<td>-8.3</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.993</td>
<td>-4.2</td>
<td>-4.2</td>
<td>Estonia</td>
<td>0.891</td>
<td>-27.2</td>
<td>-17.0</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.990</td>
<td>0.0</td>
<td>0.4</td>
<td>France</td>
<td>0.858</td>
<td>14.4</td>
<td>7.6</td>
</tr>
<tr>
<td>Latvia</td>
<td>0.986</td>
<td>-10.5</td>
<td>-10.5</td>
<td>Belgium</td>
<td>0.797</td>
<td>-12.5</td>
<td>-7.8</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.985</td>
<td>0.0</td>
<td>0.0</td>
<td>Romania</td>
<td>0.785</td>
<td>-25.4</td>
<td>-37.6</td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.972</td>
<td>-9.2</td>
<td>-9.2</td>
<td>Slovakia</td>
<td>0.781</td>
<td>13.1</td>
<td>-10.5</td>
</tr>
<tr>
<td>Cyprus</td>
<td>0.971</td>
<td>-3.0</td>
<td>2.5</td>
<td>Hungary</td>
<td>0.738</td>
<td>-9.3</td>
<td>-7.9</td>
</tr>
<tr>
<td>Lithuania</td>
<td>0.970</td>
<td>-2.2</td>
<td>-5.8</td>
<td>Portugal</td>
<td>0.723</td>
<td>-13.4</td>
<td>-2.7</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.964</td>
<td>6.7</td>
<td>0.0</td>
<td>Spain</td>
<td>0.663</td>
<td>4.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Poland</td>
<td>0.952</td>
<td>1.4</td>
<td>-3.0</td>
<td>Czech Republic</td>
<td>0.627</td>
<td>14.5</td>
<td>-3.2</td>
</tr>
<tr>
<td>Finland</td>
<td>0.933</td>
<td>-6.9</td>
<td>-11.9</td>
<td>Greece</td>
<td>0.595</td>
<td>25.2</td>
<td>2.0</td>
</tr>
<tr>
<td>Germany</td>
<td>0.931</td>
<td>4.0</td>
<td>-5.0</td>
<td>Bulgaria</td>
<td>0.573</td>
<td>8.6</td>
<td>-18.1</td>
</tr>
<tr>
<td></td>
<td>Greenhouse gas emis.</td>
<td>Industry, value added</td>
<td>Services, value added</td>
<td>Fossil fuels</td>
<td>Other fuels</td>
<td>Materials cons.</td>
<td>Capital stock</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>2000</td>
<td>6.3</td>
<td>0.5</td>
<td>4.6</td>
<td>11.1</td>
<td>10.7</td>
<td>5.6</td>
<td>0.6</td>
</tr>
<tr>
<td>2001</td>
<td>6.8</td>
<td>0.4</td>
<td>3.6</td>
<td>11.5</td>
<td>5.9</td>
<td>7.5</td>
<td>0.7</td>
</tr>
<tr>
<td>2002</td>
<td>5.3</td>
<td>1.1</td>
<td>2.2</td>
<td>8.9</td>
<td>5.3</td>
<td>5.6</td>
<td>0.5</td>
</tr>
<tr>
<td>2003</td>
<td>6.1</td>
<td>1.3</td>
<td>1.5</td>
<td>10.3</td>
<td>4.9</td>
<td>6.7</td>
<td>0.9</td>
</tr>
<tr>
<td>2004</td>
<td>5.5</td>
<td>1.6</td>
<td>2.2</td>
<td>8.7</td>
<td>3.7</td>
<td>6.2</td>
<td>0.7</td>
</tr>
<tr>
<td>2005</td>
<td>4.9</td>
<td>1.2</td>
<td>1.8</td>
<td>7.9</td>
<td>5.3</td>
<td>7.5</td>
<td>1.1</td>
</tr>
<tr>
<td>2006</td>
<td>4.1</td>
<td>1.1</td>
<td>2.7</td>
<td>8.2</td>
<td>4.3</td>
<td>8.2</td>
<td>1.7</td>
</tr>
<tr>
<td>2007</td>
<td>4.2</td>
<td>2.1</td>
<td>4.2</td>
<td>11.1</td>
<td>3.5</td>
<td>14.1</td>
<td>1.9</td>
</tr>
<tr>
<td>2008</td>
<td>3.5</td>
<td>2.4</td>
<td>4.3</td>
<td>8.3</td>
<td>8.8</td>
<td>13.8</td>
<td>2.7</td>
</tr>
<tr>
<td>2009</td>
<td>4.6</td>
<td>1.9</td>
<td>4.1</td>
<td>4.8</td>
<td>15.4</td>
<td>11.2</td>
<td>4.6</td>
</tr>
<tr>
<td>2010</td>
<td>4.0</td>
<td>0.5</td>
<td>4.3</td>
<td>7.5</td>
<td>13.5</td>
<td>13.5</td>
<td>5.6</td>
</tr>
<tr>
<td>Average</td>
<td>5.0</td>
<td>1.3</td>
<td>3.1</td>
<td>8.7</td>
<td>7.5</td>
<td>8.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Table 7: The mean of the selected indicators for efficient and inefficient countries

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Efficient</th>
<th>Inefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy intensity (Kgoe/€1000)</td>
<td>240.96</td>
<td>352.11</td>
</tr>
<tr>
<td>Gross fixed capital formation/GDP</td>
<td>3.22</td>
<td>3.13</td>
</tr>
<tr>
<td>Environmental taxes/GDP</td>
<td>2.99</td>
<td>2.63</td>
</tr>
<tr>
<td>Resource productivity (€/kg)</td>
<td>1.43</td>
<td>1.17</td>
</tr>
<tr>
<td>GDP growth (%)</td>
<td>4.47</td>
<td>2.20</td>
</tr>
<tr>
<td>Current account balance/GDP</td>
<td>-0.41</td>
<td>-2.93</td>
</tr>
<tr>
<td>Unemployment rate (%)</td>
<td>6.33</td>
<td>8.74</td>
</tr>
<tr>
<td>Greenhouse gas emissions/GDP</td>
<td>0.65</td>
<td>0.90</td>
</tr>
<tr>
<td>Primary energy source indicator</td>
<td>2.05</td>
<td>1.83</td>
</tr>
<tr>
<td>Economy focus indicator</td>
<td>1.65</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Notes: The primary energy source indicator is modeled through a 3-point scale (1=solid fuels; 2=gas, petroleum, nuclear; 3=renewables), and the economy focus is a binary indicator (0=industry focused; 1=services focused).

Table 8: Criteria trade-offs (weights in %)

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Weight</th>
<th>Criteria</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP growth</td>
<td>21.30</td>
<td>Unemployment rate</td>
<td>8.48</td>
</tr>
<tr>
<td>Energy intensity</td>
<td>15.65</td>
<td>Environmental taxes/GDP</td>
<td>6.17</td>
</tr>
<tr>
<td>Current account balance/GDP</td>
<td>13.64</td>
<td>Greenhouse gas emissions/GDP</td>
<td>5.69</td>
</tr>
<tr>
<td>Primary energy source indicator</td>
<td>12.29</td>
<td>Economy focus indicator</td>
<td>2.88</td>
</tr>
<tr>
<td>Resource productivity</td>
<td>11.89</td>
<td>Gross fixed capital formation/GDP</td>
<td>2.02</td>
</tr>
</tbody>
</table>
Table 9: Extreme average differences between the annual rankings of DEA and the multicriteria model

<table>
<thead>
<tr>
<th>MCDA upgrades</th>
<th>MCDA downgrades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greece</td>
<td>Latvia</td>
</tr>
<tr>
<td>11</td>
<td>−15</td>
</tr>
<tr>
<td>France</td>
<td>Lithuania</td>
</tr>
<tr>
<td>9</td>
<td>−15</td>
</tr>
<tr>
<td>Spain</td>
<td>Poland</td>
</tr>
<tr>
<td>9</td>
<td>−13</td>
</tr>
<tr>
<td>Portugal</td>
<td>Estonia</td>
</tr>
<tr>
<td>8</td>
<td>−12</td>
</tr>
<tr>
<td>Italy</td>
<td>Slovenia</td>
</tr>
<tr>
<td>6</td>
<td>−6</td>
</tr>
<tr>
<td>Austria</td>
<td>Slovakia</td>
</tr>
<tr>
<td>6</td>
<td>−5</td>
</tr>
</tbody>
</table>
Figure 1: Evolution of the selected variables over the period 2000–2010 (year 2000=100)

Figure 2: Evolution of the shares of fossil fuels, nuclear, and renewables to total energy consumption over the period 2000–2010
Figure 3: Average efficiency scores for the four models (CCR left, BCC right)
Figure 4: Multicriteria energy efficiency scores for the most important indicators