Forecasting the Prices of Credit Default Swaps of Greece by a Neuro-fuzzy Technique

George S. Atsalakis
Katerina I. Tsakalaki
Constantin Zopounidis

Working Paper 2012.03
February 2012
FINANCIAL ENGINEERING LABORATORY

Department of Production Engineering & Management
Technical University of Crete

List of Working Papers

Editorial Committee

Constantin Zopounidis, Michael Doumpos, Fotios Pasiouras

2010.01 Modelling banking sector stability with multicriteria approaches
C. Gaganis, F. Pasiouras, M. Doumpos, C. Zopounidis

2010.02 Bank productivity change and off-balance-sheet activities across different levels of economic development
A. Lozano-Vivas, F. Pasiouras

2010.03 Developing multicriteria decision aid models for the prediction of share repurchases
D. Andriosopoulos, C. Gaganis, F. Pasiouras, C. Zopounidis

2010.04 Developing an employee evaluation management system: The case of a healthcare organization
E. Grigoroudis, C. Zopounidis

2010.05 Analysis of domestic and cross-border mega-M&As of European commercial banks
M. Nnadi, S. Tanna

2010.06 Corporate culture and the tournament hypothesis
N. Ozkan, O. Talavera, A. Zalewska

2011.01 Mutual funds performance appraisal using a multicriteria decision making approach
V. Babalos, N. Philippas, M. Doumpos, C. Zopounidis

2011.02 Assessing financial distress where bankruptcy is not an option: An alternative approach for local municipalities
S. Cohen, M. Doumpos, E. Neophytou, C. Zopounidis

2012.01 Multicriteria decision aid models for the prediction of securities class actions: Evidence from the banking sector
V. Balla, C. Gaganis, F. Pasiouras, C. Zopounidis

2012.02 Service quality evaluation in the tourism industry: A SWOT analysis approach
M. Tsitsiloni, E. Grigoroudis, C. Zopounidis

2012.03 Forecasting the prices of credit default swaps of Greece by a neuro-fuzzy technique
G.S. Atsalakis, K.I. Tsakalaki, C. Zopounidis
Forecasting the Prices of Credit Default Swaps of Greece by a Neuro-fuzzy Technique

George S. Atsalakis, Katerina I. Tsakalaki, Constantin Zopounidis

Department of Production Engineering and Management
Technical University of Crete, Chania, Greece 73100

atsalak@otenet.gr, kattsak_89@hotmail.com, kostas@dpem.tuc.gr

Abstract: Derivative products are contracts, the value of which results from the underlying primary financial product which may be a stock, an interest rate, a foreign currency, a bond, a regulated market indicator or a commodity (for example sugar, gold, oil and others). One of the most widespread financial derivatives is the swaps, which include Credit Default Swaps (CDSs). This paper presents a model that forecasts the daily prices of credit default swaps by the development of an Adaptive Neural Network with Fuzzy Inference system (ANFIS), using data that concern daily prices of the Greek credit default swaps. The results indicate that fuzzy neural networks could be an efficient system that is easy to apply in order to accurately forecast the prices of credit default swaps of Greece.

Keywords: neuro-fuzzy forecasting, ANFIS, neural network, credit default swaps forecasting

1. Introduction

Derivative products are very popular due to their ability to offset financial risks. Generally, swaps are contracts that cover agreements between two parts, as far as exchange of inflows or outflows in the future with predetermined terms is concerned. Swaps are created and moved mainly over-the-counter and they are not standardized products, but their features are formed by the counterparties so that they cover the counterparties’ needs exactly, which means that swaps are cleared on the grounds that one counterparty collects money and the other one pays the contract price. The most widespread categories of swaps are the currency swaps and the interest rate swaps. More specifically, credit default swaps are the most popular types of credit derivatives (Young et.al, 2010) and the most frequently negotiated credit derivatives, capturing almost 45% of market share. Moreover, they are considered by many, maybe the most important and successful financial innovation of the last decade (Norden and Wagner, 2008). According to the version of a report about financial stability conducted by the Bank of Greece, credit default swaps are derivative products that are associated with the credit risk of specific underlying assets (usually bonds and loans) and operate as a kind of ensuring the buyer of such a product, as the seller undertakes, after taking a
premium, to compensate the buyer in the event that the publisher of the underlying asset defaults. These contracts are a tool for the transfer of the credit risk of a reference asset from one investor to another without transferring the ownership of this asset. Furthermore, a credit default swap is a bilateral derivative contract over one or more reference assets, in which the protection buyer pays a fee that is called a premium, during the lifetime of the contract in return for the payment of a credit event by the protection seller, and this payment follows after a credit event of the reference entities. According to Jarrow (2010), the reference entity may be a company or a government, but it could also be a Collateralized Debt Obligations (CDO) bond, which is called an Asset Backed Security (ABS). In most cases, the protection buyer makes periodic payments to the protection seller, which is typically expressed in terms of the credit default swap’s spread, the annualized percentage of the nominal amount of a transaction. In case that no predetermined credit event takes place during the lifetime of the transaction, the protection seller receives the periodic payments as compensation for the fact that he assumes the credit risk concerning the reference entity or the reference obligation. In contrast to the above, in case that any of the credit events takes place during the lifetime of the transaction, the protection buyer will receive a payment for this credit event which will depend on whether the terms of the specific credit default swap refer to physical settlement, cash settlement or fixed amount settlement.

According to the researches, the neural networks have been accused that they are not being able to recognize the degree to which an input can influence the output of the model and that the “black box” syndrome that characterizes them restricts their applicability (Saphiro, 2002). Also, another limitation of the neural network is that it should be of feed forward type and due to this restriction; the adaptive network’s applications are immediate and immense in various areas. Fuzzy logic, instead, handles with imprecise information and linguistic concepts, develops the approximate reasoning in order to perform non-linear mappings between inputs and outputs, but it is not capable of self learning. This study proposes the use of a hybrid intelligent system called ANFIS for predicting the prices of credit default swaps of Greek government bonds, which combines the learning capabilities of a neural network and the reasoning capabilities of fuzzy logic in order to achieve improved prediction capabilities, avoiding rule matching time of an inference engine in the traditional fuzzy logic system (Hornik, 1991).

The novelty of this study is that for first time an ANFIS model is applied to forecast the CDs daily prices. The rest of the paper is organized as follows: Section 2 reviews related research and Section 3 discusses the proposed methodology. Section 4 outlines the data and reports the empirical findings, while Section 5 includes the conclusions and some further discussions about the future research in this sector.
2. Literature review and related work


3. ANFIS architecture

The ANFIS model has been successfully applied to a variety of scientific areas such as energy, stock market, financial indexes, robotic applications and others. There are many papers that have used ANFIS models with high degree of accuracy in financial forecasting. Atsalakis and Valavanis, (2009), have developed an ANFIS controller that forecasts stock market short-term trends. Atsalakis et.al, (2011) presented a model that forecasts the trend of the stock prices using the Elliott Wave Theory and neuro-fuzzy systems. Atsalakis et.al., (2010) presented a time series model that forecasts wind energy production using neuro-fuzzy models and compares the results of the prediction to those when using traditional models.

This paper is dealing with the development of a forecasting system based on ANFIS, which differs from the traditional Artificial Neural Networks (ANN) in that it is not fully connected and not all the weights or nodal parameters are modifiable. The model uses a hybrid learning algorithm to identify the parameters for the Sugeno-type fuzzy inference systems. It applies a combination of the least-squares method and the back-propagation gradient descent method for training the Fuzzy Inference System (FIS)
membership function parameters to emulate the given training data set. Specifically, a back-propagation algorithm is used to optimize the fuzzy sets of the premises and a least-squares procedure is applied to the linear coefficients in the consequent terms. In addition, it uses a testing data set for checking the model over fitting. ANFIS is a multilayer neural network-based fuzzy consisted of five layers, in which the training and predicted values are represented by the input and output nodes and the nodes functioning as membership functions (MFs) and rules are presented in the hidden layers. Its topology is shown in Figure 1. During the learning phase of ANFIS, the parameters of the membership functions are changing continuously in order to minimize the error function between the target output and the calculated values.

![Diagram of ANFIS architecture](image)

**Figure 1. An illustration of the reasoning mechanism for a Sugeno-type model and the corresponding ANFIS architecture (Jang, 1997)**

For simplicity, it is assumed that the examined fuzzy inference system has two inputs, \( x \) and \( y \), and one output. For the first-order Sugeno fuzzy model, a typical fuzzy rule set in this model, with two fuzzy If-Then rules, has the following form (Jang, 1995):

**Rule1:** If \( x \) is \( A_i \) and \( y \) is \( B_i \) then \( f_i = p_i \cdot x + q_i \cdot y + r_i \) \hspace{1cm} (1)

**Rule2:** If \( x \) is \( A_2 \) and \( y \) is \( B_2 \) then \( f_2 = p_2 \cdot x + q_2 \cdot y + r_2 \) \hspace{1cm} (2)
This architecture develops an adaptive network that is functionally equivalent to a two inputs first-order Sugeno fuzzy model with four rules, where each input has two membership functions. The error measure to train the aforementioned ANFIS is defined as:

$$E = \sum_{k=1}^{n} (y_k - \hat{y}_k)^2$$

where $y_k$ and $\hat{y}_k$ are the $k$th desired and estimated output, respectively, and $n$ is the total number of pairs (inputs–outputs) of data in the training set. Due to its efficiency and transparency, ANFIS is outperforming other models.

4. Experimental data and performance of the model

The experimental data concerns a time series of daily prices of credit default swaps of Greece, ranging from March 2003 to June 2011, in total 2170 samples. The model forecasts the prices of credit default swaps one step ahead. The 2047 samples have been used as training data for training the model and the remaining 121 have been used as evaluation data to test the prediction performance of the resulting model. The structure of ANFIS consist one input and one output, which means that the forecasting system is used to predict the next day value of credit default swaps of Greece based on the previous values. The method of trial and error is used in order to decide the type and number of membership functions, the number of epochs and the step size that best describe the model and provide the lowest error. The optimal fuzzy inference is achieved after 1000 epochs with two membership functions of gauss shape and the step size set in 0.01. Figure 2 depicts the initial MFs of each input variable before the training of the model and figure 3 depicts the final MFs after the completion of the training process. The comparison between the initial and the final MFs of the input data indicates important differences and the model resulted in remarkable deviation between the initial and the final MFs.
Moreover, figure 4 depicts the out of sample results produced by the Adaptive-Network-based Fuzzy Inference System (ANFIS). It can be seen that the actual values and the values from the ANFIS prediction are almost identical, which means that the model is performing very satisfactory.
Lastly, figure 5 shows the ANFIS error curves and the ANFIS step size curve.
The network applies 4 rules and there is one input and one output. Table 1 describes the type and values of the ANFIS parameters.

<table>
<thead>
<tr>
<th>ANFIS parameter type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF type</td>
<td>Gauss function</td>
</tr>
<tr>
<td>Number of MFs</td>
<td>2</td>
</tr>
<tr>
<td>Output MF</td>
<td>Linear</td>
</tr>
<tr>
<td>Number of Nodes</td>
<td>21</td>
</tr>
<tr>
<td>Number of linear parameters</td>
<td>12</td>
</tr>
<tr>
<td>Number of nonlinear parameters</td>
<td>16</td>
</tr>
<tr>
<td>Total number of parameters</td>
<td>28</td>
</tr>
<tr>
<td>Number of training data pairs</td>
<td>2047</td>
</tr>
<tr>
<td>Number of evaluating data pairs</td>
<td>121</td>
</tr>
<tr>
<td>Number of fuzzy rules</td>
<td>4</td>
</tr>
</tbody>
</table>

During the evaluation phase, the out of sample data is carried out and the output of the model is compared with the actual data of the next day. The performance of the model is examined using the main statistical errors of: Mean square error (MSE), Root mean square error (RMSE), Mean absolute error (MAE) and Mean absolute percentage error (MAPE). Table 2 summarizes the results of the statistical analysis.

<table>
<thead>
<tr>
<th>ANFIS</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>4.6568986</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.0068241</td>
</tr>
<tr>
<td>MAE</td>
<td>0.0019778</td>
</tr>
<tr>
<td>MAPE</td>
<td>0.0000065</td>
</tr>
</tbody>
</table>
The results indicate that the forecasting performance of ANFIS is satisfactory and acceptable both in research and in practice.

5. Conclusion

This paper presents a Fuzzy Inference System for the prediction of daily prices of credit default swaps of Greece. The model is developed using Matlab software. The results of the prediction are satisfactory and encouraging. Fuzzy logic theory could predict well, as far as modeling on uncertain data is concerned. The use of ANFIS to predict the prices of credit default swaps of Greece have the following advantages:

a) ANFIS is simple to maintain and apply on forecast practically.

b) It combines the capabilities of fuzzy systems and neural networks.

c) Fuzzy rule based system incorporates the flexibility of human decision making by means of the use of fuzzy set theory and makes use of fuzzy linguistic terms described by MFs.

d) It requires fewer and simpler trials and errors for optimization of their architecture.

e) It is nonlinear and capable of adapting and learning fast from numerical and linguistic knowledge.

f) ANFIS is a model-free, easy to implement approach. In contrast to traditional time series methods, little training is needed to calculate predictions with ANFIS. It implements a single-fitting procedure to nonlinear situations, without the need of establishing a formal model for the problem being resolved. Thus, no a priori information is required to determine the empirical relationship between explanatory and predicted variables and the method suitability is always tested a posteriori.

e) The transparent rule structure of ANFIS allows the researcher to extract information about the empirical relationship between the inputs and the outputs over time and to provide concise explanations.

In conclusion, these forecasting results can provide useful information and guidance for financial and market analysts. Yet, further research is recommended in order to improve the forecast results. Some suggestions for further research could be the use of more data concerning the years before 2003 in order to forecast the daily prices of credit default swaps, the use of more inputs in order to take the output which is the forecast of these prices or the use of data concerning the daily prices of credit default swaps of other countries in order to compare the results of the prediction for each country.

6. References


5. Atsalakis G., Skiadas C. and Braimis I., (2007), Probability of trend prediction of exchange rate by neuro-fuzzy techniques, XIIth International conference on Applied Stochastic Models and Data Analysis, Greece


27. Miguel A. Ferreira (2005), Forecasting the comovements of spot interest rates, Journal of International Money and Finance 24, 766e792
34. Hornik K., (1991), Approximation capabilities of multi-layer feed-forward networks, Neural Networks 4, 251-257
38. The Economics of Credit Default Swaps (CDS), SSRN Working Paper Series, 2010, Jarrow, R.A.
42. Ping Liu and Jian Yao (2009), Application of least square support vector machine based on particle swarm optimization to chaotic time series prediction, IEEE International Conference on Intelligent Computing and Intelligent Systems, 458-462
44. Kanta Marwah (1985), A prototype model of the foreign exchange market of Canada: Forecasting capital flows and exchange rates, Economic Modelling Volume 2, Issue 2, Pages 93-124
56. Francisco J. Ruge-Murcia (2006), The expectations hypothesis of the term structure when interest rates are close to zero, Journal of Monetary Economics 53, 1409–1424
57. Credit Default Swap Pricing using Artificial Neural Networks, Khaled Shaban, Abdunnaser Younes, Robert Lam, Michael Allison and Shajeehan Kathirgamanathan, 2010, International Joint Conference on Neural Networks, Pages 1-8
71. Lean Yu, Shouyang Wang, Kin Keung Lai (2005), Adaptive Smoothing Neural Networks in Foreign Exchange Rate Forecasting, V.S. Sunderam et al. (Eds.): ICCS, Computational Science, LNCS Vol. 3516, pp. 523 – 530