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The Robustness Concern in Preference
Disaggregation Approaches for Decision Aiding:
An Overview

Michael Doumpos and Constantin Zopounidis

Abstract In multiple criteria decision aid, preference disaggregation techniques are

used to facilitate the construction of decision models, through regression-based ap-

proaches that enable the elicitation of preferential information from a representative

set of decision examples provided by a decision-maker. The robustness of such ap-

proaches and their results is an important feature for their successful implementa-

tion in practice. In this chapter we discuss the robustness concern in this context,

overview the main methodologies that have been recently developed to obtain ro-

bust recommendations from disaggregation techniques, and analyze the connections

with statistical learning theory, which is also involved with inferring models from

data.

1 Introduction

Managers, analysts, policy makers, and regulators are often facing multiple techni-

cal, socio-economic, and environmental objectives, goals, criteria, and constraints,

in a complex and ill-structured decision making framework, encountered in all as-

pects of the daily operation of firms, organizations, and public entities. Coping with

such a diverse and conflicting set of decision factors poses a significant burden to

the decision process when ad-hoc empirical procedures are employed.

Multiple criteria decision aid (MCDA) has evolved into a major discipline in op-

erations research/management science, which is well-suited for problem structuring,
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modeling, and analysis in this context. MCDA provides a wide arsenal of method-

ologies and techniques that enable the systematic treatment of decision problems

under multiple criteria, in a rigorous yet flexible manner, taking into consideration

the expertise, preferences, and judgment policy of the decision makers (DMs) in-

volved. The MCDA framework is applicable in a wide range of different types of

decision problems, including deterministic and stochastic problems, static and dy-

namic problems, as well as in situations that require the consideration of fuzzy and

qualitative data of either small or large scale, by a single DM or a group of DMs. A

comprehensive overview of the recent advances in the theory and practice of MCDA

can be found in the book of Zopounidis and Pardalos [68].

Similarly to other OR and management science modeling approaches, MCDA

techniques are also based on assumptions and estimates on the characteristics of the

problem, the aggregation of the decision criteria, and the preferential system of the

DM. Naturally, such assumptions and estimates incorporate uncertainties, fuzziness,

and errors, which affect the results and recommendations provided to the DM. As a

result, changes in the decision context, the available data, or a reconsideration of the

decision criteria and the goals of the analysis, may ultimately require a very different

modeling approach leading to completely different outputs. Thus, even if the results

may be judged satisfactory when modeling and analyzing the problem, their actual

implementation in practice often leads to new challenges not taken previously into

consideration.

In this context, robustness analysis has emerged as a major research issue in

MCDA. Robustness analysis seeks to address the above issues through the introduc-

tion of a new modeling paradigm based on the idea that the multicriteria problem

structuring and criteria aggregation process should not be considered in the context

of a well-defined, strict set of conditions, assumptions, and estimates, but rather to

seek to provide satisfactory outcomes even in cases where the decision context is

altered.

Vincke [61] emphasized that robustness should not be considered in the restric-

tive framework of stochastic analysis (see also [34] for a discussion in the context of

discrete optimization) and distinguished between robust solutions and robust meth-

ods. He further argued that although robustness is an appealing property, it is not a

sufficient condition to judge the quality of a method or a solution. Roy [45], on the

other hand, introduced the term robustness concern to emphasize that robustness is

taken into consideration a priori rather than a posteriori (as is the case of sensitivity

analysis). In the framework of Roy, the robustness concern is raised by vague ap-
proximations and zones of ignorance that cause the formal representation of a prob-

lem to diverge from the real-life context, due to: (i) the way imperfect knowledge

is treated, (ii) the inappropriate preferential interpretation of certain types of data

(e.g., transformations of qualitative attributes), (iii) the use of modeling parameters

to grasp complex aspects of reality, and (iv) the introduction of technical parameters

with no concrete meaning. An recent example of robustness in the context of multi-

objective linear programming can be found in Georgiev et al. [18]. The framework

for robust decision aid has some differences compared to the traditional approach
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to robustness often encounter in other OR areas. A discussion of these differences

(and similarities) can be found in Hites et al. [28].

The robustness concern is particularly important in the context of the preference

disaggregation approach of MCDA, which is involved with the inference of pref-

erential information and decision models from data. Disaggregation techniques are

widely used to facilitate the construction of multicriteria evaluation models, based

on simple information that can the DM can provide [30], without requiring the speci-

fication of complex parameters whose concept is not clearly understood by the DMs.

In this chapter we provide an overview of the robustness concern in the preference

disaggregation context, covering the issues and factors that affect the robustness of

disaggregation methods, the approaches that have been proposed to deal with ro-

bustness in this area, and the existing connections with concepts and methodologies

from the area of statistical learning.

The rest of the chapter is organized as follows. Section 2 presents the context of

preference disaggregation analysis with examples from ordinal regression and clas-

sification problems. Section 3 discusses the concept of robustness in disaggregation

methods and some factors that affect it, whereas section 4 overviews the different

approaches that have been proposed to obtain robust recommendations and mod-

els in preference disaggregation analysis. Section 5 presents the statistical learning

perspective and discusses its connections to the MCDA disaggregation framework.

Finally, section 6 concludes the chapter and proposes some future research direc-

tions.

2 Preference disaggregation analysis

2.1 General framework

A wide class of MCDA problems requires the evaluation of a discrete set of alter-

natives (i.e., ways of actions, options) X = {x1,x2, . . . ,} described on the basis of

n evaluation criteria. The DM may be interested in choosing the best alternatives,

ranking the alternatives from the best to the worst, or classifying them into prede-

fined performance categories.

In this context, the construction of an evaluation model that aggregates the per-

formance criteria and provides recommendations in one of the above forms, requires

some preferential information by the DM (e.g., the relative importance of the cri-

teria). This information can be specified either through interactive, structured com-

munication sessions between the analyst and the DM or it can be inferred from a

sample of representative decision examples provided by the DM. Preference disag-

gregation analysis (PDA) adopts the latter approach, which is very convenient in

situations where, due to cognitive or time limitations, the DM is unwilling or unable

to provide the analyst with specific information on a number of technical parameters

(which are often difficult to understand) required to formulate the evaluation model.
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PDA provides a general methodological framework for the development of mul-

ticriteria evaluation models using examples of decisions taken by a DM (or a group

of DMs), so that DM’s system of preferences is represented in the models as ac-

curately as possible. The main input used in this process is a reference set of al-

ternatives evaluated by the DM (decision examples). The reference set may consist

of past decisions, a subset of the alternatives under consideration, or a set of fic-

titious alternatives which can be easily judged by the DM [30]. Depending on the

decision problematic, the evaluation of the reference alternatives may be expressed

by defining an order structure (total, weak, partial, etc.) or by classifying them into

appropriate classes.

Formally, let D(X ′) denote the DM’s evaluation of a set X ′ consisting of m refer-

ence alternatives described over n criteria (the description of alternative i on criterion

k will henceforth be denoted by xik). The DM’s evaluation is assumed to be based

(implicitly) on a decision model fβ defined by some parameters β , which repre-

sent the actual preferential system of the DM. Different classes of models can be

considered. Typical examples include:

• Value functions defined such that V (xi)>V (x j) if alternative i is preferred over

alternative j and V (xi) =V (x j) in cases of indifference [33]. The parameters of a

value function model involve the criteria trade-offs and the form of the marginal

value functions.

• Outranking relations defined such that xi Sx j if alternative i is at least as good as

alternative j. The parameters of an outranking model, may involve the weights

of the criteria, as well as preference, indifference and veto thresholds, etc. (for

details see [44, 60]).

• “If ... then ...” decision rules [21]. In this case the parameters of the model involve

the conditions and the conclusions associated to each rule.

The objective of PDA is to infer the “optimal” parameters β̂ ∗ that approximate,

as accurately as possible, the actual preferential system of the DM as represented in

the unknown set of parameters β , i.e.:

β̂ ∗ = arg min
β̂∈A

‖β̂ −β‖ (1)

where A is a set of feasible values for the parameters β̂ . With the obtained param-

eters, the evaluations performed with the corresponding decision model fβ̂ ∗ will be

consistent with the evaluations actually performed by the DM for any set of alterna-

tives.

Problem (1), however, cannot be solved explicitly because β is unknown. In-

stead, an empirical estimation approach is employed using the DM’s evaluation of

the reference alternatives to proxy β . Thus, the general form of the optimization

problem is expressed as follows:

β̂ ∗ = arg min
β̂∈A

L[D(X ′),D̂(X ′)] (2)
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where D̂(X ′) denotes the recommendations of the model fβ̂ for the alternatives in

X ′ and L(·) is a function that measures the differences between D(X ′) and D̂(X ′).

2.2 Inferring value function models for ordinal regression and
classification problems

The general framework of PDA is materialized in several MCDA methods that en-

able the development of decision models in different forms [14, 50, 67]. To facilitate

the exposition we shall focus on functional models expressed in the form of additive

value functions, which have been widely used in MCDA.

A general multiattribute value function aggregates all the criteria into an overall

performance index V (global value) defined such that:

V (xi)>V (x j)⇔ xi � x j

V (xi) =V (x j)⇔ xi ∼ x j
(3)

where � and ∼ denote the preference and indifference relations, respectively. A

value function may expressed in different forms, depending on the criteria indepen-

dence conditions [33]. Due to its simplicity, the most widely used form of value

function is the additive one:

V (xi) =
n

∑
k=1

wkvk(xik) (4)

where wk is the (non-negative) trade-off constant of criterion k (the trade-offs are

often normalized to sum up to one) and vk(·) is the marginal value functions of the

criterion, usually scaled such that vk(xk∗) = 0 and vk(x∗k) = 1, where xk∗ and x∗k are

the least and the most preferred levels of criterion k, respectively.

Such a model can be used to rank a set of alternatives or to classify them in pre-

defined groups. In the ranking case, the relationships (3) provide a straightforward

way to compare the alternatives. In the classification case, the simplest approach is

to define an ordinal set of groups G1,G2, . . . ,Gq on the value scale with the follow-

ing rule:

t� <V (xi)< t�−1 ⇔ xi ∈ G� (5)

where t1 > t2 · · · > tq−1 are thresholds that distinguish the groups. Alternative clas-

sification rules can also be employed such as the example-based approach of Greco

et al. [23] or the hierarchical model of Zopounidis and Doumpos [66].

The construction of a value function from a set of reference examples can be per-

formed with mathematical programming formulations. For example, in an ordinal

regression setting, the DM’s defines a weak-order of the alternatives in the reference

set, by ranking them from the best (alternative x1) to the worst one (alternative xm).

Then, the general form of the optimization problem for inferring a decision model
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from the data can be expressed as in the case of the UTA method [29] as follows:

min σ1 +σ2 + · · ·+σm

s.t.
n

∑
k=1

wk[vk(xik)− vk(xi+1,k)]+σi −σi+1 ≥ δ ∀xi � xi+1

n

∑
k=1

wk[vk(xik)− vk(xi+1,k)]+σi −σi+1 = 0 ∀xi ∼ xi+1

w1 +w2 + . . .+wn = 1

vk(xik)− vk(x jk)≥ 0 ∀xik ≥ x jk

vk(xk∗) = 0, vk(x∗k) = 1 k = 1, . . . ,n

wk, vk(xik), σi ≥ 0, ∀ i,k

(6)

where x∗ = (x∗1, . . . ,x
∗
n) and x∗ = (x1∗, . . . ,xn∗) represent the ideal and anti-ideal al-

ternatives, respectively. The solution of this optimization problem provides a value

function that reproduces the DM’s ranking of the reference alternatives as accu-

rately as possible. The differences between the model’s recommendations and the

DM’s weak-order are measured by the error variables σ1, . . . ,σm, which are defined

through the first two constraints (with δ being a small positive constant). The third

constraint normalizes the trade-off constants, whereas the fourth constraint ensures

that the marginal value functions and non-decreasing (assuming that the criteria are

expressed in maximization form).

For classification problems, the optimization formulation for inferring a classifi-

cation model from the reference examples using the threshold-based rule (5) can be

expressed as follows:

min
q

∑
�=1

1

m�
∑

xi∈G�

(σ+
i +σ−

i )

s.t.
n

∑
k=1

wkvk(xik)+σ+
i ≥ t�+δ ∀xi ∈ G�, �= 1, . . . ,q−1

n

∑
k=1

wkvk(xik)−σ−
i ≤ t�−δ ∀xi ∈ G�, �= 2, . . . ,q

t�− t�+1 ≥ ε �= 1, . . . ,q−2

w1 +w2 + . . .+wn = 1

vk(xik)− vk(x jk)≥ 0 ∀xik ≥ x jk

vk(xk∗) = 0, vk(x∗k) = 1 k = 1, . . . ,n

wk, σ+
i , σ−

i ≥ 0 ∀ i, k

(7)

The objective function minimizes the total weighted classification error, where the

weights are defined on the basis of the number of reference alternatives from each

class (m1, . . . ,mq). The error variables σ+ and σ− are defined through the first two

constraints as the magnitude of the violations of the classification rules, whereas the
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third constraint ensures that the class thresholds are non-increasing (with ε being a

small positive constant).

For the case of an additive value function, the above optimization problems can

be re-expressed in linear programming form with a piece-wise linear modeling of

the marginal values function (see for example [29]).

3 Robustness in preference disaggregation approaches

The quality of models resulting from disaggregation techniques is usually described

in terms of their accuracy, which can be defined as the level of agreement between

the DM’s evaluations and the outputs of the inferred model. For instance, in ordinal

regression problems rank correlation coefficients (e.g., the Kendall’s τ or Spear-

man’s ρ) can be used for this purpose, whereas in classification problems the classi-

fication accuracy rate and the area under the receiver operating characteristic curve

are commonly used measures. Except for accuracy-related measures, however, the

robustness of the inferred model is also an crucial feature. Recent experimental stud-

ies have shown that robustness and accuracy are closely related [59]. However, ac-

curacy measurements are done ex-post and rely on the use of additional test data,

while robustness is taken into consideration ex-ante, thus making it an important

issue that is taken into consideration before a decision model is actually put into

practical use.

The robustness concern in the context of PDA arises because in most cases mul-

tiple alternative decision models can be inferred in accordance with the information

embodied in the set of reference decision examples that a DM provides. This is

particularly true for reference sets that do not contain inconsistencies, but it is also

relevant when inconsistencies do exist (in the PDA context, inconsistencies are usu-

ally resolved algorithmically or interactively with the DM before the final model

is built; see for instance [40]). With a consistent reference set, the error variables

in formulations (6)–(7) become equal to zero and consequently these optimization

models reduce to a set of feasible linear constraints. Each solution satisfying these

constraints corresponds to a different decision model and even though all the cor-

responding feasible decision models provide the same outputs for the reference set,

their recommendations can differ significantly when the models are used to perform

evaluations for other alternatives.

For instance, consider the example data of Table 1 for a classification problem

where a DM classified six references alternatives in two categories, under three

evaluation criteria. Assuming a linear weighted average model of the form V (xi) =
w1xi1 +w2xi2 +w3xi3, with w1 +w2 +w3 = 1 and w1,w2,w3 ≥ 0, the model would

be consistent with the classification of the alternatives if V (xi) ≥ V (x j)+ δ for all

i= 1,2,3 and j = 4,5,6, where δ is a small positive constant (e.g., δ = 0.01). Figure

1 illustrates graphically the set of values for the criteria trade-offs that comply with

the classification of the reference alternatives (the shaded area defined by the corner

points A-E). It is evident that very different trade-offs provide the same results for
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the reference data. For example, the trade-off w1 of the first criterion may vary

anywhere from zero to one, whereas w2 may vary from zero up to 0.7.

Table 1 An illustrative classification problem

Criteria

Alternatives x1 x2 x3 Classification

x1 7 1 8 G1

x2 4 5 8 G1

x3 10 4 2 G1

x4 2 4 1 G2

x5 4 1 1 G2

x6 1 2 5 G2

w1

w 2
 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A
B

C
D

E

Fig. 1 The feasible set for the criteria trade-offs that are compatible with the classification of the
example data of Table 1

The size of the polyhedron defined by a set of feasible constraints of formula-

tions such as (6) and (7) depends on a number of factors, but the two most important

can be identified to the adequacy of set of reference examples and the complexity

of the selected decision modeling form. The former is immediately related to the

quality of the information on which model inference is based. Vetschera et al. [59]

performed an experimental analysis to investigate how the size of the reference set

affects the robustness and accuracy of the resulting multicriteria models in classifi-

cation problems. They found that small reference sets (e.g., with a limited number

of alternatives with respect to the number of criteria) lead to decision models that

are neither robustness nor accurate. Expect for its size other characteristics of the
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reference set are also relevant, may involve the existence of noisy data, outliers, the

existence of correlated criteria, etc. [12].

The complexity of the inferred decision model is also an issue that is related

to its robustness. Simpler models (e.g., a linear value function) are more robust

compared to more complex non-linear models. The latter are defined by a larger

number of parameters and as a result the inference procedure becomes less robust

and more sensitive to the available data. For instance, Figure 2 illustrates a two-

class classification problem with two criteria (which correspond to the axes of the

figure). The linear classification model (green line) is robust; with the available data

only marginal changes can be made in this model (separating line) without affecting

its classification results for the data shown in the figure. On the other hand, a non-

linear model (blue line) is not robust, particularly in the areas where the data are

sparse (i.e., the upper left and lower right parts of the graph). Therefore, care should

be given to the selection of the appropriate modeling taking into account both the

DM’s system of preferences as well as the available data. This issue has been studied

extensively in areas such as the statistical learning theory [47, 56, 57].

-3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

Fig. 2 A linear vs a non-linear classification model

4 Robust disaggregation approaches

The research in the area of building robust multicriteria decision models and obtain-

ing robust recommendations with disaggregation techniques can be classified into

three main directions. The first, involves approaches that focus on describing the

set of feasible decision models with analytic or simulation techniques. The second

direction focuses on procedures for formulating robust recommendations through

multiple acceptable decision models, whereas a third line of research has focused

on techniques for selecting the most characteristic (representative) model from the
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set of all models compatible with the information provided by the reference set. The

following subsections discuss these approaches in more detail.

4.1 Describing the set of acceptable decision models

The DM’s evaluations for the reference alternatives provide information on the set

of acceptable decision models that comply with these evaluations. Searching for

different solutions within this feasible set and measuring its size provides useful in-

formation on the robustness of the results. Analytic and simulation-based techniques

have been used for this purpose, focusing on convex polyhedral sets for which the

analysis is computationally feasible. As explained in the previous section, for de-

cision models which are linear with respect to their parameters (such as additive

value functions) the set of acceptable decision models is a convex polyhedron. The

same applies to other types of decision models with some simplifications on the

parameters that are inferred (see for example [41]).

Jacquet-Lagrèze and Siskos [29] were the first to emphasize that the inference of

a decision model through optimization formulations such as the ones described in

section 2.2, may not be robust thus suggesting that the existence of multiple optimal

solutions (or even alternative near-optimal ones in the cases of inconsistent refer-

ence sets) should be carefully explored. The approach they suggested was based on

a heuristic post-optimality procedure seeking to identify some characteristic alterna-

tive models corresponding to corner points of the feasible polyhedron. In the context

of inferring an ordinal regression decision model, this approach is implemented in

two phases. First, problem (6) is solved and its optimal objective function value F∗
(total sum of errors) is recorded. In the second phase, 2n additional optimization

problems are solved by maximizing and minimization the trade-offs of the criteria

(one at a time), while ensuring that the new solutions do not yield an overall error

larger than F∗(1+α), where α is a small percentage of F∗. While this heuristic

approach does not fully describe the polyhedron that defines the parameters of the

decision model, it does give an indication of how much the relative importance of

the criteria deviates within the polyhedron. Based on this approach, Grigoroudis

and Siskos [24] developed a measure to assess the stability and robustness of the

inferred model as the normalized standard deviation of the results obtained from the

post-optimality analysis.

Despite their simplicity, post-optimality techniques provide only a limited partial

view of the complete set of models that are compatible with the DM’s preferences.

A more thorough analysis requires the implementation of computationally intensive

analytic or simulation approaches. Following the former direction, Vetschera [58]

developed a recursive algorithm for computing the volume of the polyhedron that is

derived from preferential constraints in the case of a linear evaluation model, but the

algorithm was applicable to rather small problems (e.g., up to 20 alternatives and 6

criteria). Similar, but computationally more efficient algorithms, are available in the

area of computational geometry, but they have not yet been employed in the context
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of MCDA. For instance, Lovász and Vempala [38] presented a fast algorithm for

computing the volume of a convex polyhedron, which combines simulated anneal-

ing with multi-phase Monte Carlo sampling.

The computational difficulties of analytic techniques have led to the adoption of

simulation approaches, which have gained much interest in the context of robust

decision aiding. Originally used for sensitivity analysis [7] and decision aiding in

stochastic environments [37], simulation techniques have been recently employed to

facilitate the formulation of robust recommendations under different decision mod-

eling forms. For instance, Tervonen et al. [52] used such an approach in order to

formulate robust recommendations with the ELECTRE TRI multicriteria classifica-

tion method [16], whereas Kadziński and Tervonen [31, 32] used a simulation-based

approach to enhance the results of robust analytic techniques obtained with additive

value models in the context of ranking and classification problems.

Simulation-based techniques were first based on rejection sampling schemes. Re-

jection sampling is a naı̈ve approach under which a random model is constructed

(usually from a uniform distribution [46]) and tested against the DM’s evaluations

for the reference alternatives. The model is accepted only if it is compatible with

the DM’s evaluations and rejected otherwise. However, the rejection rate increases

rapidly with the dimensionality of the polyhedron (as defined by the number of

the model’s parameters). As a result the sampling of feasible solutions becomes in-

tractable for problems of realistic complexity. Hit-and-run algorithms [35, 53] are

particularly useful in reducing the computational burden, thus enabling the efficient

sampling from high-dimensional convex regions.

4.2 Robust decision aid with a set of decision models

Instead of focusing on the identification of different evaluation models that can be

inferred from a set of reference decision examples through heuristic, analytic, or

simulation approaches, a second line of research has been concerned with how ro-

bust recommendations can be formulated by aggregating the outputs of different

models and exploiting the full information embodied in a given set of decision in-

stances.

Siskos [49] first introduced the idea of building preference relations based on

a set of decision models inferred with a preference disaggregation approach for

ordinal regression problems. In particular, he presented the construction of a fuzzy

preference relation based on the results of a post-optimality procedure. The fuzzy

preference relation allows the evaluation of the alternatives through the aggregation

of the outputs of multiple characteristic models (additive value functions) inferred

from a set of decision instances.

Recently, this idea has been further extended to consider not only a subset of ac-

ceptable models but all models that can be inferred from a given reference set (with-

out actually identifying them). Following this approach and in an ordinal regression
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setting, Greco et al. [22] defined necessary and possible preference relations on the

basis of the DM’s evaluations on a set of reference alternatives, as follows:

• Weak necessary preference relation: xi �N x j if V (xi) ≥ V (x j) for all decision

models V (·) compatible with the DM’s evaluations on a set of reference alterna-

tives.

• Weak possible preference relation: xi �P x j if V (xi) ≥ V (x j) for at least one

decision model V (·) compatible with the DM’s evaluations on a set of reference

alternatives.

From these basic relations preference, indifference, and incomparability relations

can be built allowing the global evaluation of any alternative using the full infor-

mation provided by the reference examples. The above relations can be checked

through the solution of simple optimization formulations, without actually requir-

ing the enumeration of all decision models that can be inferred from the reference

examples. This approach was also used for multicriteria classification problems [23]

as well as for outranking models [10, 19] and non-additive value models [1].

4.3 Selecting a representative decision model

Having an analytic or simulation-based characterization of all compatible models

(e.g., with approaches such as the ones described in the previous subsections) pro-

vides the DM with a comprehensive view of the range of possible recommendations

that can be formed on the basis of a set of models implied from some decision ex-

amples. On the other hand, a single representative model is easier to use as it only

requires the DM to “plug-in” the data for any alternative into a functional, relational,

or symbolic model. Furthermore, the aggregation of all evaluation criteria in a single

decision model enables the DM to get insight into the role of the criteria and their

effect on the recommendations formulated through the model [20].

In the above context several approaches have been introduced to infer a single

decision model that best represents the information provided by a reference set of

alternatives. Traditional disaggregation techniques such as the family of the UTA

methods [50] use post-optimality techniques based on linear programming in order

to build a representative additive value function defined as an average solution of

some characteristic models compatible with the DM’s judgments, defined by maxi-

mizing and minimizing the criteria trade-offs. Such an averaging approach provides

a proxy of the center of the feasible region.

However, given that only a very few number of corner points are identified with

this heuristic post-optimality process (at most 2n corner points), it is clear that the

average solution is only a very rough “approximation” of the center of the polyhe-

dron. Furthermore, the optimizations performed during the post-optimality analysis

may not lead to unique results. For instance, consider again the classification exam-

ple discussed in section 3 and its graphical illustration in Figure 1 for the feasible

set for the criteria trade-offs which are compatible with the DM’s classification of
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the reference alternatives (Table 1). The maximization of the trade-off constant w1

leads to corner point C, the maximization of w2 leads to point A, whereas the max-

imization of w3 (which corresponds to the minimization of w1 +w2) leads to point

D. However, the minimization of the two trade-offs does not lead to uniquely de-

fined solutions. For instance, the minimization of w1 may lead to point A or point

E, the minimization of w2 leads either to C or D, and the minimization of w3 (i.e.,

the maximization of w1 +w2) may lead to points B or C. Thus, depending on which

corner solutions are obtained, different average decision models can be constructed.

Table 2 lists the average criteria trade-offs corresponding to different centroid so-

lutions. It is evident that the results vary significantly depending on the obtained

post-optimality results.

Table 2 The post-optimality approach for constructing a centroid model within the polyhedron of
acceptable models for the data of Table 1

Post-optimality solutions

max w1 C C C C C C C C
min w1 E A E A E A E A
max w2 A A A A A A A A
min w2 D D C C D D C C

max w3 (min w1 +w2) D D D D D D D D
min w3 (max w1 +w2) B B B B C C C C

Centroid solutions

w1 0.31 0.31 0.44 0.44 0.42 0.42 0.54 0.54
w2 0.32 0.34 0.32 0.34 0.22 0.23 0.22 0.23
w3 0.37 0.35 0.24 0.23 0.37 0.35 0.24 0.23

A number of alternative approaches have been proposed to address the ambi-

guity in the results of the above post-optimality process. Beuthe and Scannella [4]

presented different post-optimality criteria in an ordinal regression setting to im-

prove the discriminatory power of the resulting evaluating model. Similar criteria

were also proposed by Doumpos and Zopounidis [12] for classification problems.

Alternative optimization formulations have also been introduced allowing the

construction of robust decision models without requiring the implementation of

post-optimality analyses. Following this direction, Doumpos and Zopounidis [13]

presented simple modifications of traditional optimization formulations (such as the

ones discussed in section 2.2) on the grounds of the regularization principle which

is widely used in data mining and statistical learning [57]. Experimental results on

artificial data showed that new formulations can provide improved results in ordinal

regression and classification problems. On the other hand, Bous et al. [5] proposed

a non-linear optimization formulation for ordinal regression problems that enables

the construction of an evaluation model through the identification of the analytic

center of the polyhedron form by the DM’s evaluations on some reference decision

instances. Despite its non-linear character, the proposed optimization model is easy
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to solve with existing iterative algorithms. In a different framework, Greco et al.

[20] considered the construction of a representative model through an interactive

process, which is based on the grounds of preference relations inferred from the full

set of models compatible with the DM’s evaluations [22]. During the proposed in-

teractive process, different targets are formulated, which can be used by the DM as

criteria for specifying the most representative evaluation model.

5 Connections with statistical learning

5.1 Principles of data mining and statistical learning

Similarly to disaggregation analysis, statistical learning and data mining are also

involved with learning from examples [25, 26]. Many advances have been made

within these fields for regression, classification, and clustering problems. Recently

there has been a growing interest among machine learning researchers towards pref-

erence modeling and decision-making. Some interest has also been developed by

MCDA researchers on exploiting the advances in machine learning.

Hand et al. [25] define data mining as “the analysis of (often large) observational
data sets to find unsuspected relationships and to summarize the data in novel ways
that are both understandable and useful to the data owner”. Statistical learning

plays an important role in the data mining process, by describing the theory that

underlies the identification of such relationships and providing the necessary al-

gorithmic techniques. According to Vapnik [56, 57] the process of learning from

examples includes three main components:

1. A set X of data vectors x drawn independently from a probability distribution

P(x). This distribution is assumed to be unknown, thus implying that there is no

control on how the data are observed [51].

2. An output y from a set Y , which is defined for every input x according to an

unknown conditional distribution function P(y | x). This implies that the rela-

tionship between the input data and the outputs is unknown.

3. A learning method (machine), which is able to assign a function fβ : X → Y ,

where β are some parameters of the unknown function.

The best function fβ is the one that best approximates the actual outputs, i.e., the

one that minimizes: ∫
L[y, fβ (x)]dP(x,y) (8)

where L[y, fβ (x)] is a function of the differences between the actual output y and the

estimate fβ (x),1 and P(x,y) = P(x)P(y | x) is the joint probability distribution of x

1 The specification of the loss function L depends on the problem under consideration. For instance,
in a regression setting it may correspond to the mean squared error, whereas in a classification
context it may represent the accuracy rate.
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and y. However, this joint distribution is unknown and the only available information

is contained in a training set of m objects {(x1,y1), . . . ,(xm,ym)}, which are assumed

to be generated independently from this unknown distribution. Thus, the objective

(8) is substituted by an empirical risk estimate:

1

m

m

∑
i=1

L[yi, fβ (xi)] (9)

For a class of functions fβ of a given complexity, the minimization of (9) leads

to the minimization of an upper bound for (8).

A comparison of (2) and (9) shows that PDA and statistical learning are con-

cerned with similar problems from different perspectives and focus (for a discussion

of the similarities and differences of the two fields see [14, 62]).

5.2 Regularization and robustness in learning machines

In the context of data mining and statistical learning, robustness is a topic of fun-

damental importance and is directly linked to the theory in these fields. Robustness

in this case has a slightly different interpretation compared to its used in MCDA.

In particular, from a data mining/statistical learning perspective robustness involves

the ability of a prediction model (or learning algorithm) to retain its structure and

provide accurate results in cases where the learning process is based on data that

contain imperfections (i.e., errors, outliers, noise, missing data, etc.). Given that the

robustness of a prediction model is related to its complexity, statistical learning has

been founded on a rigorous theoretical framework that connects robustness, com-

plexity, and the empirical risk minimization approach.

The foundations of this theoretical framework are based on Tikhonov’s regu-

larization principle [54], which involves systems of linear equations of the form

Ax = b. When the problem is ill-posed, such a system of equations may not have a

solution and the inverse of matrix A may exhibit instabilities (i.e., A may be singu-

lar or ill-conditioned). In such cases, a numerically robust solution can be obtained

through the approximate system Ax ≈ b, such that the following function is mini-

mized:

‖Ax−b‖2 +λ‖x‖2 (10)

where λ > 0 is a regularization parameter that defines the trade-off between the

error term ‖Ax−b‖2 and the “size” of the solution (thus controlling the solution for

changes in A and b).

With the introduction of statistical learning theory Vapnik [56] developed a gen-

eral framework that uses the above idea to relate the complexity and accuracy of

learning machines. In particular, Vapnik showed that under a binary loss function,

1 Although this is not a restricted assumption, as the theory is general enough to accommodate
other loss functions as well.



16 Michael Doumpos and Constantin Zopounidis

the expected error E(β ) of a decision model defined by some parameters β , is

bounded (with probability 1−α) by:

E(β )≤ Eemp(β )+
√

h[log(2m/h)+1]− log(α/4)

m
(11)

where Eemp is the empirical error of the model as defined by equation (9) and h is

the Vapnik-Chervonenkis dimension, which represents the complexity of the model.

When the size of the training data set in relation to the complexity of the model is

large (i.e., when m/h � 1), then the second term in the left-hand side of (11) de-

creases and the expected error is mainly defined by the empirical error. On the other

hand, when m/h � 1 (i.e., the number of training observations is too low compared

to the model’s complexity), then the second term increases and thus becomes rele-

vant for the expected error of the model.

This fundamental result constitutes the basis for developing decision and predic-

tion models in classification, regression, and clustering tasks. For instance, assume

a binary classification setting where a linear model f (x) = wx− γ should be de-

veloped to distinguish between a set of positive and negative observations. In this

context, it can be shown that if the data belong in a ball of radius R, the complex-

ity parameter h of a model with ‖w‖ ≤ L (for some L > 0) is bounded as follows

[56, 57]:

h ≤ min{L2R2, n}+1 (12)

Thus, with a training set consisting of m positive and negative observations (y = 1

and yi =−1, respectively), the optimal model that minimizes the expected error can

be obtained from the solution of the following convex quadratic program:

min
1

2
‖w‖2 +C

m

∑
i=1

σi

s.t. yi(wxi − γ)+σi ≥ 1 ∀ i = 1, . . . ,m

σi ≥ 0 ∀ i = 1, . . . ,m

w, γ ∈ R

(13)

The objective function of this problem is in accordance with the Tikhonov regu-

larization function (10). In particular, the sum of classification errors σ1, . . . ,σm is

used as a substitute for the error term ‖Ax−b‖2 in (10), whereas the regularization

parameter λ in (10) is set equal to 0.5/C. The minimization of ‖w‖2 in the objective

function of the above problem corresponds to the minimization of the complexity

bound (12), which in turn leads to the minimization of the second term in the error

bound (11). On the other hand, the minimization of the sum of the classification

errors corresponds to the minimization of the empirical error Eemp.

This framework is not restricted to linear models, but it also extends to nonlin-

ear models of arbitrary complexity and it is applicable to multi-class problems [6],

regression problems [9, 39], and clustering problems [2]. Similar, principles and ap-
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proaches have also been used for other types of data mining models such as neural

networks [17].

The development of data mining and statistical learning models with optimiza-

tion with mathematical programming techniques has received much attention [43].

In this context, robust model building has been considered from the perspective of

robust optimization. Bertsimas et al. [3] expressed a robust optimization model in

the following general form:

min f (x)
s.t. gi(x, ui)≤ 0 ∀ui ∈ Ui, i = 1, . . . ,m

x ∈ R

(14)

where x is the vector of decision variables, ui ∈ R
k are perturbation vectors associ-

ated with the uncertainty in the parameters that define the constraints, and Ui ⊆ R
k

are uncertainty sets in which the perturbations are defined (for an overview of the

theory and applications of robust optimization in design problems see [36]). For

instance, a robust linear program can be expressed as follows:

min c�x

s.t. a�i x ≤ bi ∀ai ∈ Ui, i = 1, . . . ,m

x ∈ R

(15)

where the coefficients of the decision variables in the constraints take values from

the uncertainty sets Ui ⊆R
n. Thus, a constraint a�i x≤ bi is satisfied for every ai ∈Ui

if and only if maxai∈Ui{a�i x} ≤ bi.

The framework of robust optimization has been used to develop robust decision

and prediction models in the context of statistical learning. For instance, assuming

that the data for observation i are subject to perturbations defined by a stochastic

vector δi from some distribution, bounded such that ‖δi‖2 ≤ ηi, the constraints of

problem (13) can be re-written as:

yi[w(xi +δi)− γ]+σi ≥ 1 (16)

Such methodologies for developing robust learning machines have been presented

in several works (see for instance [48, 55, 64, 63]). Caramanis et al. [8] as well as

Xu and Mannor [65] provide comprehensive overviews of robust optimization in the

context of statistical learning and data mining.

5.3 Applications in MCDA disaggregation approaches

The principles and methodologies available in the areas of data mining and statis-

tical/machine learning have recently attracted interest for the development of en-

hanced approaches in MCDA. In this context, Herbrich et al. [27] explored how
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the modeling approach described in the previous section can be used to develop

value function models in ordinal regression problems and analyzed the generaliza-

tion ability of such models in relation to the value differences between alternatives

in consecutive ranks.

Evgeniou et al. [15] also examined the use of the statistical learning paradigm in

an ordinal regression setting. They showed that the development of a linear value

function model of the form V (x) = wx that minimizes ‖w‖2 leads to robust results,

as the obtained model corresponds to the center of the largest sphere that can be in-

scribed by preferential constraints of the form w(xi−x j)≥ 1 for pairs of alternatives

such that xi � x j.

Doumpos and Zopounidis [13] followed a similar approach for the development

of additive function functions using the L1 norm for the vector of parameters of

the model. Thus, they augmented the objective function of problems (6)–(7) con-

sidering not only the error variables, but also the complexity of the resulting value

function. Through this approach, they described the relationship between the accu-

racy of the decision model and the quality of the information provided by the ref-

erence data. Empirical analyses on ranking and classification problems showed that

the new formulations provide results that best describe the DM’s preferences, are

more robust to changes of the reference data, and have higher generalization perfor-

mance compared to existing PDA approaches. A similar approach for constructing

additive value functions was also proposed by Dembczynski et al. [11] who com-

bined a statistical learning algorithm with a decision rule approach for classification

problems.

Except for functional decision models, similar approaches have also been used

for relational models, which are based on pairwise comparisons between the alter-

natives. For instance, Waegeman et al. [62] used a kernel approach for constructed

outranking decision models and showed that such an approach is general enough to

accommodate (as special cases) a large class of different types of decision models,

including value functions and the Choquet integral. Pahikkala et al. [42] extended

this approach to intransitive decision models.

6 Conclusions and future perspectives

PDA techniques greatly facilitate the development of multicriteria decision aiding

models, requiring the DM to provide minimal information without asking for the

specification of complex technical parameters which are often not well-understood

by DMs in practice. However, using such a limited amount of data should be done

with care in order to derive meaningful and really useful results.

Robustness is an important issue in this context. Addressing the robustness con-

cern enables the formulation of recommendations and results that are valid under

different conditions with respect to the modeling conditions and the available data.

In this chapter we discussed the main aspects of robustness in PDA techniques and

provided an up-to-date overview of the different lines of research and the related



The Robustness Concern in Disaggregation Approaches for Decision Aiding 19

advances that have been introduced in this area. We also discussed the statistical

learning perspective for developing robust and accurate decision models, which has

adopted a different point of view in the analysis of robustness compared to MCDA.

Despite their different philosophies, PDA and statistical learning share common

features and their connections could provide further improved approaches to robust

decision aiding. Future research should also focus on the further theoretical and em-

pirical analysis of the robustness properties of PDA formulations, the introduction

of meaningful measures for assessing robustness, and the development of method-

ologies to improve the robustness of models and solutions in decision aid.
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